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Motivations

Part 1.1: Some Motivations for Quantum
Computations
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Motivations

Different Levels of Physics

“the underlying physical laws necessary for
the mathematical theory of a large part of
physics and the whole of chemistry are thus
completely known.”

Paul A. M. Dirac (1929)

multiscale physics fig by Prof. Qin Li
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Motivations

Different Levels of Physics

“the underlying physical laws necessary for
the mathematical theory of a large part of
physics and the whole of chemistry are
thus completely known, and the difficulty is
only that the exact application of these laws
leads to equations much too complicated to
be soluble.”

Paul A. M. Dirac (1929)

multiscale physics fig by Prof. Qin Li
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Motivations

Schrödinger equation for Molecular Dynamics

To describe its behaviour: (x: nuclei coordinates, y: electronic
coordinates, M : mass of a nucleus, m: mass of an electron.)

Ĥtotal = − ℏ2

2M
∆x−

ℏ2

2m
∆y + V (x, y), x ∈ Rd, y ∈ Rn

iℏ∂tψ = Ĥtotalψ
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Motivations

Quantum Computing 101

“... nature isn’t classical, dammit, and if
you want to make a simulation of nature,
you’d better make it quantum mechanical,
and by golly it’s a wonderful problem, be-
cause it doesn’t look so easy.”

Richard Feynman (1981)

Hamiltonian Simulation Problem (original motivation for quantum
computers): Given a description of the Hamiltonian H(t), an evolution
time t and an initial state |ψ(0)⟩, to produce the final state |ψ(t)⟩
within in some error tolerance ϵ.

i∂t |ψ(t)⟩ = H(t) |ψ(t)⟩ , |ψ(0)⟩ = |ψ0⟩ .
H(t) ≡ H, to simulate e−iHt for H of very high dimension!.
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Motivations

Why on a Quantum Computer?

Quantum Advantage:
Quantum computers can give potential exponential speed ups.

Potential Applications: numerical algebra, numerical differential
equations, and many more scientific computing topics
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Basics of QC

Part 1.2: How? Some Basics of Quantum
Computations

Di Fang (Duke) Introduction for Quantum Algorithms for Scientific Computation 8 / 37



Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary

Quantum State Space:
In quantum mechanics, the (quantum) state of a physical system
is represented by a normalized vector in a Hilbert space,
denoted as H: a complex vector space with an inner product.
Braket Notations: For dim(H) = N ,

|ψ⟩ := ψ =


ψ0

ψ1

...
ψN−1

, ⟨ψ| := ψ† complex conjugate.

Inner product ⟨ψ|ϕ⟩ := ⟨ψ, ϕ⟩ =
∑
j∈[N ] ψ̄jϕj .

Outer Product of two quantum states |x⟩ and |y⟩:

|x⟩ ⟨y| =


x0
x1
· · ·
xN−1

(y†0 y†1 · · · y†N−1

)
maps |y⟩ to |x⟩.

Tr(|x⟩ ⟨y|) = ⟨y|x⟩ , |x⟩ ⟨x| is a projection operator.
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Basics of QC

Basic QC Glossary – one qubit & superposition

Simple example: 2 dimensional case

Standard/ Computational Basis Vectors |0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
.

Superposition: A (Quantum) State

|ψ⟩ = α |0⟩+ β |1⟩ ,

for α, β ∈ C s.t. |α|2 + |β|2 = 1.
When we observe (or measure) in this basis, we “see” (get an
outcome of) 0 with probability |α|2, and 1 with probability |β|2.

Geometry of a qubit: Bloch Sphere
Wait... Something is off?
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Basics of QC

Basic QC Glossary – one-qubit state
Quantum Principle: Physical properties remain unchanged w.r.t. a
global phase.

|ψ⟩ → eiθ |ψ⟩ , θ ∈ R.
Undistinguishable under the laws of quantum mechanism.

|0⟩ , |1⟩ also called Z basis states.

When θ = π/2, ϕ = 0,
|+⟩ = 1√

2
(|0⟩+ |1⟩)

When θ = π/2, ϕ = π,
|−⟩ = 1√

2
(|0⟩ − |1⟩)

called the X basis states.

fig from QuTech.
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Basics of QC

Basic QC Glossary – multi-qubit state
For general n-qubit system, H = B⊗n.

Tensor Product

|x⟩ ⊗ |y⟩ =
(
x0
x1

)
⊗
(
y0
y1

)

=

x0
(
y0
y1

)
x1

(
y0
y1

)
 =


x0y0
x0y1
x1y0
x1y1


E.g., |00⟩ := |0⟩⊗ |0⟩ =

(1, 0, 0, 0)T

, |01⟩ := |0⟩⊗ |1⟩ =

(0, 1, 0, 0)T

,
|10⟩ := |1⟩ ⊗ |0⟩ =

(0, 0, 1, 0)T

, |11⟩ := |1⟩ ⊗ |1⟩ =

(0, 0, 0, 1)T

.
Tensor product is non-commutative!

In quantum braket notation,

|x⟩ ⊗ |y⟩ :=(x0 |0⟩+ x1 |1⟩)⊗ (y0 |0⟩+ y1 |1⟩)
=x0y0 |00⟩+ x0y1 |01⟩+ x1y0 |10⟩+ x1y1 |11⟩ .

What is the relationship with N and n? N = 2n !
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In quantum braket notation,

|x⟩ ⊗ |y⟩ :=(x0 |0⟩+ x1 |1⟩)⊗ (y0 |0⟩+ y1 |1⟩)
=x0y0 |00⟩+ x0y1 |01⟩+ x1y0 |10⟩+ x1y1 |11⟩ .

What is the relationship with N and n? N = 2n !
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary – multi-qubit state & entanglement

An n-qubit state is called a product state, if it can be represented
as the tensor product of one-qubit states |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕn⟩.
E.g., |00⟩, 1

2 (|00⟩+ |01⟩+ |10⟩+ |11⟩)

= |+⟩ ⊗ |+⟩

Are all n-qubit states are product states?

No! Entangled States

E.g., 1√
2
(|00⟩+ |11⟩) Bell State (EPR pair)

Proof: Suppose 1√
2
(|00⟩+ |11⟩) = (a |0⟩+ b |1⟩)⊗ (c |0⟩+ d |1⟩)

ac = bd = 1/
√
2, ad = bc = 0. Impossible.

Two important quantum features:
Superposition and Entanglement
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary – operators: quantum gates
Are quantum state allowed to change over time?

Yes!

Quantum Gates: unitary operators acting over the state space H.
A gate acting on n qubits is represented by 2n × 2n unitary matrix
(denote as U ).

|ψ⟩ U U |ψ⟩

Properties:
Quantum gates preserve the norm.

Proof: (U |ψ⟩)†U |ψ⟩ = ⟨ψ|U†U |ψ⟩ = ⟨ψ|ψ⟩ = 1, for |ψ⟩ ∈ H.
Quantum gates preserve angle between two quantum states.
Quantum gates are invertible (reversible).

Examples – commonly used single-qubit gates:

Hadamard Gate H = 1√
2

[
1 1
1 −1

]
, H† = H−1 = H
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary – common one-qubit gates cont’d

Pauli matrices X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

(also denote as σx, σy, σz.) Y = iXZ

X : |0⟩ ↔ |1⟩ bit flip; Z : |x⟩ → (−1)x |x⟩, x = 0, 1 phase-flip.
Multi-qubit Paulis: tensors of single qubit Paulis.
Properties:

Their inverses are themselves. (Hermitian + Unitary)
X/Y/Z basis vectors are eigenvectors of X,Y, Z, respectively.
They anti-commute.
(many-body) Hamiltonian (Hermitian matrices) can be written as
linear combinations of (n-qubit) Paulis.

Phase-shift Gate: P (ϕ) = P (φ) =

[
1 0
0 eiφ

]
Z = P (π), S = P (π/2) =

[
1 0
0 i

]
, T = P (π/4) =

[
1 0
0 ei

π
4

]
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Common two-qubit gates

CNOT (controlled-NOT)
|a⟩

|b⟩

controlled-U gate
U

SWAP

Clifford gates: elements of Clifford group
Cn = {V ∈ U2n | VPnV

† = Pn}. Here Pn is the n-qubit Pauli group.
Generators: {H, S, CNOT}.

Non-Clifford gates:
T, Toffoli (CCNOT)

3-qubit gates? 4-qubit gates? General n-qubit gates? tons of gates to
remember??

Upshot: Universality!
A set of quantum gates is called universal, if composing gates from it
can approximate any quantum gate to any desired precision.
Some examples of universal gate sets are:

{CNOT, all single-qubit gates}
{CNOT, H, T}
{Toffoli, H}
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary – Measurements
Measurement:

2-qubit example |ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩

Circuit We will observe


00 with prob |α00|2

01 with prob |α01|2

10 with prob |α10|2

11 with prob |α11|2

Partial Measurement:

Circuit Observe

{
0 with prob |α00|2 + |α01|2

1 with prob |α10|2 + |α11|2

If we observe 0, the joint state after the measurement becomes
α00 |00⟩+ α01 |01⟩√

|α00|2 + |α01|2
= |0⟩ ⊗ α00 |0⟩+ α01 |1⟩√

|α00|2 + |α01|2
. “Unentangled”

Wave function collapse after measurement
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Basics of QC

Basic QC Glossary – quantum circuits

Quantum algorithms (QA) are represented by quantum circuits.

Complexity of a QA: Gate complexity, Query complexity (oracle)

Question: Relationship of QA v.s. Classical algorithms?
Is QC at least as powerful as classical computing?
Is there always an exponential (superpolynomial) quantum
advantage?

Di Fang (Duke) Introduction for Quantum Algorithms for Scientific Computation 18 / 37



Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary – quantum circuits

Quantum algorithms (QA) are represented by quantum circuits.

Complexity of a QA: Gate complexity, Query complexity (oracle)

Question: Relationship of QA v.s. Classical algorithms?
Is QC at least as powerful as classical computing?
Is there always an exponential (superpolynomial) quantum
advantage?

Di Fang (Duke) Introduction for Quantum Algorithms for Scientific Computation 18 / 37



Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary – quantum circuits

Quantum algorithms (QA) are represented by quantum circuits.

Complexity of a QA: Gate complexity, Query complexity (oracle)

Question: Relationship of QA v.s. Classical algorithms?

Is QC at least as powerful as classical computing?
Is there always an exponential (superpolynomial) quantum
advantage?

Di Fang (Duke) Introduction for Quantum Algorithms for Scientific Computation 18 / 37



Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary – quantum circuits

Quantum algorithms (QA) are represented by quantum circuits.

Complexity of a QA: Gate complexity, Query complexity (oracle)

Question: Relationship of QA v.s. Classical algorithms?
Is QC at least as powerful as classical computing?
Is there always an exponential (superpolynomial) quantum
advantage?

Di Fang (Duke) Introduction for Quantum Algorithms for Scientific Computation 18 / 37



Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary – QC vs CC
Question 1: Is QC at least as powerful as classical computing?

Yes!
Classical arithmetic operations can be performed quantumly.
Really? Reversibility?

x1

AND

x2

x1 x1

x2

SWAP

(don’t care)

0 x1 ANDx2 (Ancilla)

What about Probabilistic Computing? Success prob ≥ (say 0.99)

CoinFlip |0⟩ H

Question 2: Always exponential quantum speedup (b/c 2n = N )?
No!! Restrictions:

Unitary + Measurement (Needs structure of tasks!)
No cloning theorem
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary: No-cloning Theorem
There is no quantum circuit that clones an arbitrary quantum state!

No-cloning Theorem (simple ver.): There is no unitary operation
that can enact the evolution |ψ⟩ |s⟩ → |ψ⟩ |ψ⟩ for all states |ψ⟩.

Consequence: Iterative-type algorithms for scientific computing
tasks are difficult to implement efficiently.

Wait... Something is weird? CNOT
|a⟩ |a⟩

|b⟩ |a⊕ b⟩

|ψ⟩ |ψ⟩

|0⟩ |ψ⟩
Copying of classical
info. No contrad.!

Another important remark: If we know how to prepare |ψ⟩ (from
|s⟩), i.e. |ψ⟩ = U |s⟩ for a known unitary U . Then

(I ⊗ U) |ψ⟩ |s⟩ = |ψ⟩ |ψ⟩ .
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Basic QC Glossary: Exponential Quantum Advantage

Exponential Quantum Advantage (EQA) (often this is also used to
refer superpolynomial speedup)

Criteria to claim EQA:

There is a QA with quantum complexity ≤ polylogN .
(A) Best-known Classical Alg. has complexity ≥ epolylogN

(B) Show that the task is BQP-complete
(Any Classical Alg. under reasonable complexity conjectures)

Examples of Tasks with EQA:
Factoring ⇒ Shor’s Algorithm (A)
Invert a large sparse linear system ⇒ HHL Algorithm (A)(B)
Hamiltonian Simulation (B)
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Summary of Part 1

Motivation: first principle, potential EQA
Quantum State
Quantum Gates / Circuits
Measurement
QA v.s. CA; no-cloning; EQA
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Basics of QC

Part 2: Block-encoding and Hamiltonian
Simulation
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Hamiltonian Simulation
Hamiltonian Simulation Problem: Given a description of the
Hamiltonian H(t), an evolution time t and an initial state |ψ(0)⟩, to
produce the final state |ψ(t)⟩ within in some error tolerance ϵ.

Time-independent: H(t) ≡ H is a 2n × 2n matrix

i∂t |ψ(t)⟩ = H |ψ(t)⟩ , |ψ(0)⟩ = |ψ0⟩ .

∥∥Uapp |ψ0⟩ − e−iHt |ψ0⟩
∥∥ ≤

∥∥Uapp − e−iHt
∥∥ ≤ ϵ.

Examples of H: many-body Hamiltonian

H =
∑

E∈S⊂{I,X,Y,Z}⊗n

λEE,

k-local Hamiltonian (TFIM, Heisenberg models, etc), etc.
No-fast-forwarding Theorem(informal): Simulating Hamiltonian
dynamics for time t requires complexity Ω(t).
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Hamiltonian Simulation Algorithms
Trotterization ( = Product Formulae = Time/Operator Splitting)
1st-order Trotter formula (Lie-Trotter) for H = H1 +H2

e−iHt ≈
(
e−iH2t/Le−iH1t/L

)L
Cost/Complexity?

error estimate and circuit implementation

e−iHt =
(
e−iH2t/Le−iH1t/L

)L
+O

(
∥[H1, H2]∥t2/L

)
The number of Trotter steps L = O

(
∥[H1, H2]∥t2/ϵ

)
· · ·n

e−iH1t/L e−iH2t/L e−iH1t/L e−iH2t/L

⇒ O
(
∥[H1, H2]∥t2/ϵ

)
queries to e−iH1s and e−iH2s.

High order (p-th): query complexity O
(
αHt

1+1/p/ϵ1/p
)
.

Everything is unitary! No ancilla needed.
But it needs e−iHjs efficiently implementable.

Post-Trotter, e.g., truncated Taylor series, quantum signal
processing (QSP), quantum singular value transformation
(QSVT), etc.

e−iHt ≈
K∑
k=0

(−iHt)k

k!
=

K∑
k=0

∑
ℓ1,··· ,ℓk

(−it)k

k!
Hℓ1Hℓ2 · · ·Hℓk .

Upshot: ⇒ O(t log(1/ϵ)) ⇒ Even better, say, O(t+ log(1/ϵ))?
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Block-Encoding – Definition
Let A be a general 2n × 2n matrix.
Idea:

UA =

(
A ∗
∗ ∗

)
→ ancilla qubits

Definition (Block-encoding)

UA is an (α,m, ϵ)-block-encoding of A, if

∥A− α (⟨0m| ⊗ In)UA (|0m⟩ ⊗ In) ∥ ≤ ϵ,

for some α ≥ ∥A∥, m > 0 and ϵ > 0. Here α is called the
subnormalization factor and m is the number of ancilla qubits, and n
is the number of system qubits. When ϵ = 0, it is also called an
(α,m)-block-encoding.

|0m⟩
UA

|ψ⟩ A|ψ⟩
∥A|ψ⟩∥ (upon getting 0 in measurement)

Reference: [Gilyen-Su-Low-Wiebe 2018/2019], Lecture notes by Lin Lin
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Block-Encoding – Definition
Let A be a general 2n × 2n matrix. ∥A∥ ≤ α

Idea:

UA =

 Ã
α

∗
∗ ∗

 ∥∥∥Ã−A
∥∥∥ ≤ ϵ

→ m ancilla qubits,

Definition (Block-encoding)

UA is an (α,m, ϵ)-block-encoding of A, if

∥A− α (⟨0m| ⊗ In)UA (|0m⟩ ⊗ In) ∥ ≤ ϵ,
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Block-Encoding – Definition cont’d

|0m⟩
UA

|ψ⟩ A|ψ⟩
∥A|ψ⟩∥ (upon getting 0 in measurement)

|0, ψ⟩ = |0⟩⊗|ψ⟩ =
(
|ψ⟩
0

)
, UA |0, ψ⟩ =

 Ã
α

∗
∗ ∗

(|ψ⟩
0

)
=

(
Ã |ψ⟩
∗

)
.

Question: Well-defined? Not an empty set?
Trivial example (unitary): U is a (1, 0, 0)-block-encoding of U .
(α, 1)-block-encoding is general. WLOG, assume ∥A∥ ≤ 1.
Proof : A =WΣV †. All singular values ∈ [0, 1].

UA :=

(
W 0
0 In

)(
Σ

√
In − Σ2

√
In − Σ2 −Σ

)(
V † 0
0 In

)
=

(
A W

√
In − Σ2

√
In − Σ2V † −Σ

)

Reference: [Gilyen-Su-Low-Wiebe 2018/2019], Lecture notes by Lin Lin
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Block-Encoding – Properties

Properties: Let UA be an (α, a, ϵ)-BE of A; UB be a (β, b, δ)-BE of B

1 (BE of cA) UA is an (cα, a, cϵ)-BE of cA.
2 (BE of AB)
W = (Ib ⊗ UA)(Ia ⊗ UB) is an (αβ, a+ b, αδ + βϵ)-BE of AB.
Proof:∥∥∥AB − αβ(⟨0|⊗a+b ⊗ I)(Ib ⊗ UA)(Ia ⊗ UB)(|0⟩⊗a+b ⊗ I)

∥∥∥
=
∥∥∥AB − α(⟨0|⊗a ⊗ I)UA(|0⟩⊗a ⊗ I)︸ ︷︷ ︸

Ã

β(⟨0|⊗b ⊗ I)UB(|0⟩⊗b ⊗ I)︸ ︷︷ ︸
B̃

∥∥∥
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B̃

∥∥∥
=
∥∥∥AB − ÃB + ÃB − ÃB̃
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∥∥∥(A− Ã)B + Ã(B − B̃)
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∥∥∥ =
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Block-Encoding – Properties
Properties: Let UA be an (α, a, ϵ)-BE of A; UB be a (β, b, δ)-BE of B

1 (BE of cA) UA is an (cα, a, cϵ)-BE of cA.
2 (BE of AB)
W = (Ib ⊗ UA)(Ia ⊗ UB) is an (αβ, a+ b, αδ + βϵ)-BE of AB.

3 (BE of A+B)

UA: (1,m, ϵ)-BE of A; UB : (1,m, δ)-BE of B
The following circuit constructs a (2,m, δ + ϵ)-BE of A+B.

|0⟩ H H

|0m⟩
UA UB

|ψ⟩

More generally, linear combination of block-encodings can be
constructed via Linear Combination of Unitaries (LCU) Lemma.
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

LCU Lemma
LCU Lemma: T =

∑
j∈[L] cjUj for unitaries Uj . ∥c∥1 =

∑
j∈[L] |cj |.

One can get a (∥c∥1 , ⌈log2 L⌉)-block-encoding by:

SEL :=
∑
j∈[L]

|j⟩ ⟨j| ⊗ Uj

PREP |0⟩ = 1√
∥c∥1

∑
j∈[L]

√
cj |j⟩.

|0m⟩ PREP

SEL

PREP†

|ψ⟩

General LCBE: maxjmj + ⌈log2 L⌉ ancillas

LCU [Berry-Childs-Kothari 2015], General LCBE [Gilyen-Su-Low-Wiebe 2018]
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

Matrix Function

We can “+” and “×” ⇒ we can BE poly(A)

⇒ We can BE f(A). Super Powerful!!!

e.g., e−iHt Hamiltonian Simulation, e−βH Gibbs distribution, A−1

matrix inversion, etc.

But A+A2 + · · ·+Ad

Number of ancillas: m+ 2m+ · · ·+ dm⇒ dm+ log(d) HUGE!

Question: Can we do better? Yes! 1 additional ancilla is sufficient!
Quantum Singular Value Transformation (QSVT) / Quantum Signal
Processing (QSP)
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Intro to Quantum Computing Block Encoding and Hamiltonian Simulation Other advanced topics

QSVT
A =WΣV † f⋄(A) :=Wf(Σ)V † Generalized Matrix Function

Theorem (QSVT with odd real polynomial)
Let UA be a (1,m)-block-encoding of A ∈ C2n×2n . Given an odd
polynomial Pℜ(x) ∈ R[x] of odd degree d satisfying

|Pℜ(x)| ⩽ 1,∀x ∈ [−1, 1].

We can find a sequence of phase factors Φ ∈ Rd+1 and construct a
(1,m+ 1)-block-encoding of P ⋄

ℜ(A) that uses UA, U
†
A, m-qubit

controlled NOT, and single qubit rotation gates for O(d) times.
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· · ·
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Optimal Hamiltonian Simulation
Given UH : an (α,m, 0)-block-encoding of H.
Goal: an algorithm that makes O(t+ log(1/ϵ)) queries to UH .

eiHt = ei
H
α αt. WLOG, assume α = 1. eitx = cos(tx) + i sin(tx)

Jacobi-Anger expansion on [−1, 1]:

cos(tx) =J0(t) + 2

∞∑
k=1

(−1)kJ2k(t)T2k(x),

sin(tx) =2

∞∑
k=0

(−1)kJ2k+1(t)T2k+1(x).

This series converges rapidly. Truncating it with

r = Θ

(
t+

log(1/ϵ)

log(e+ log(1/ϵ)/t)

)
terms gives a polynomial approximation (with precision ϵ and
degree 2r + 1) of cos(tx) + i sin(tx) = eitx.
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Optimal Hamiltonian Simulation

Given UH : an (α,m, 0)-block-encoding of H.
Goal: an algorithm that makes O(t+ log(1/ϵ)) queries to UH .

eiHt = ei
H
α αt. WLOG, assume α = 1. eitx = cos(tx) + i sin(tx)

Query Complexity: (α ≥ ∥H∥.)

O
(
αt+

log(1/ϵ)

log(e+ log(1/ϵ)/t)

)
.
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Success Probability
e−iHt is unitary. Success probability upon measurement is ok. 1

But BE of non-unitary. Success probability can be very small!!

Suppose |ψ⟩ can be prepared by Uψ, i.e., Uψ |0n⟩ = |ψ⟩, and

|ψ⟩ = √
p |ψgood⟩+

√
1− p |ψbad⟩ .

The success probability of getting ψgood is p.
⇒ need to repeat measurement O(1/p) times.

What if p is too small?

Amplitude Amplification (AA): The success probability can be boosted
from p to Ω(1) via AA that accesses O(1/

√
p) times of the circuit U .

1In fact, it is an issue even for Hamiltonian simulation that leads to exponential cost
in time. But for unitary dynamics, OAA (can be viewed as a form of QSVT) can solve
the issue.
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Summary of Part 2

Hamiltonian simulation and Trotterization
Block-encoding: Definition and Properties
LCU and QSVT
Optimal Hamiltonian Simulation via QSVT
Success Probability
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General Differential Equations (optional)

Other advanced topics

General Linear Differential Equation (optional)

Hamiltonian Simulation – time dependent case? with
unboundeded operator? (workshop talk)
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Ham. Sim. with Unbounded Operators (workshop talk)

References on Quantum Algorithms
M. Nielsen and I. Chuang. Quantum Computation and Quantum
Information, Cambridge University Press (classics)
Lecture Notes on Quantum Computation by Umesh Vazirani (UC
Berkeley) (entry level)
Lecture Notes on Quantum Computation by John Preskill (Caltech)
(entry level)
Lecture Notes on Quantum Computation by Ryan O’Donnell (CMU)
(entry level)
Lecture notes on Quantum Algorithms for Scientific Computations by Lin
Lin (UC Berkeley) [arXiv:2201.08309] (advanced topics)
Lecture notes on Quantum Algorithms by Andrew Childs (U Maryland)
(advanced topics)
Qiskit Textbook by IBM (https://qiskit.org/learn) (Algorithm Demos)

Thank you for your attention!
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