
Shintani zeta-functions and Gross–Stark units for totally
real fields

Samit Dasgupta
Department of Mathematics

Harvard University
1 Oxford St

Cambridge, MA 02138
dasgupta@post.harvard.edu

September 16, 2007

Abstract

Let F be a totally real number field and let p be a finite prime of F , such that
p splits completely in the finite abelian extension H of F . Stark has proposed a
conjecture stating the existence of a p-unit in H with absolute values at the places
above p specified in terms of the values at zero of the partial zeta-functions associated
to H/F . Gross proposed a refinement of Stark’s conjecture which gives a conjectural
formula for the image of Stark’s unit in F×p /Ê, where Fp denotes the completion of F

at p and Ê denotes the topological closure of the group of totally positive units E of
F . We propose a further refinement of Gross’ conjecture by proposing a conjectural
formula for the exact value of Stark’s unit in F×p .
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1 Introduction

Let F be a number field and let H be a finite Galois extension of F . In the late 1970s, Stark
stated a series of conjectures relating the leading terms at 0 of the partial zeta-functions of
H/F to a certain regulator defined in terms of valuations of elements in H× [21]. In the
last two of these papers, Stark studied in greater detail the case where H/F is an abelian
extension. Let v denote a place of F which splits completely in H. The “rank one abelian
Stark conjecture” then purports the existence of an element u ∈ H× whose valuations at the
places above v are related via a precise formula to the derivatives at 0 of the partial zeta-
functions of H/F . When v is a real place, Stark’s formula is particularly striking because
it provides an explicit formula for the image of u under the real embeddings of H. When u
generates H, Stark’s conjecture thus provides an “explicit class field theory” for H/F .

When v is complex, knowledge of the absolute value of u at the places above v does not
provide an explicit analytic formula for u. Not only does this prevent one from giving an
explicit class field theory using Stark’s conjecture, but it creates computational difficulties
as well (see [10]). Recently, some progress has been made on the problem of providing an
explicit analytic formula for u, and not just its absolute value ([3] and [14]).

Stark’s original papers focused on the case where v is an infinite prime, but the case
where v is finite was incorporated into a uniform exposition by Tate [22]. The present article
concerns the case when v is a finite prime. Suppose that v lies above the rational prime p.
In this case, knowing the absolute values of u at the places above v also does not provide
an analytic formula for u (even though Stark’s precise conjecture, stated in Conjecture 2.5
below, determines u uniquely by specifying the valuations of u at all places and imposing an
additional congruence). Let w be a place above v, which gives an embedding H ⊂ Hw

∼= Fv.
In [11] and [12], Gross stated a refinement of Stark’s conjecture which can be used to provide
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a formula for NormFv/Qp u ∈ Q×p . This gives more p-adic analytic information about u, but
does not provide an explicit formula for u itself. The goal of this article is to propose an
exact v-adic analytic formula for u ∈ F×v and a description of the action of Gal(H/F ) on u
in analytic terms, as a form of “Shimura Reciprocity Law.” Our conjectural formula may be
viewed as a v-adic explicit class field theory for H/F.

Since Stark’s unit is only non-trivial (in the finite v case) when F is totally real and H is
totally complex containing a CM subfield, we will make this assumption for the remainder
of the article. In fact in this case, the element u will lie in the maximal CM subfield of H.
The case where F is real quadratic and H is a ring class field extension was addressed in
[7], where a formula for Stark’s unit was proposed using modular symbols in analogy with
Darmon’s definition of Stark–Heegner points [6]. The methodology in the present article is
quite different than that of [7]. However it is proven in Section 8 that the formula for Stark’s
unit given in Conjecture 3.21 below agrees with that proposed in [7]. Thus the present article
may be viewed as a generalization of [7] to arbitrary totally real fields (and arbitrary totally
complex abelian extensions H).

We now briefly describe the methods and content of this article. In Section 2 we state
the conjectures of Gross and Stark in our context. Gross stated his first p-adic conjecture
in [11], and provided a simultaneous refinement of this conjecture and Stark’s conjecture in
[12]. In Section 3, we restate Gross’s second conjecture in terms of v-adic measures, and
use this formulation as motivation for our proposed formula for u. To express this more
precisely, consider for a moment the case where H is the narrow Hilbert class field of F . Let
O denote the ring of integers of F , and let E ⊂ O× denote the group of totally positive units
of F . Let Ov denote the v-adic completion of O, and let Ê denote the topological closure of
E in O×v . Gross’s conjecture can be viewed as giving a formula for the image of u in F×v /Ê,

in terms of an integral on the compact group O×v /Ê with respect to a certain measure µ
(see Proposition 3.3). To define a formula for the image of u in F×v , we lift the measure µ
to a measure ν on O×v ; this lifting depends on the choice of a fundamental domain D for
the action of E on F ⊗Q R. We follow Shintani by choosing D to be a union of simplicial
cones (defined in Section 3.3). Shintani defined these fundamental domains in order to find
explicit formulas for the values of the partial zeta-functions of H/F at nonpositive integers
[19]. We use Shintani’s domains and his formulas for the special values in order to prove
that the lifted measures we define are in fact p-adically bounded. Our calculations are quite
closely related to those of Cassou-Nogues [1], who used Shintani’s methods to define the
p-adic L-functions of H/F .

In Section 3 we present our conjectural formula for u, and in the following section we
briefly describe a computation providing evidence for this conjecture in a case where F is
a totally real cubic field. In Section 5 we discuss the dependence of our formula for u on
the choice of Shintani domain D; modulo some technicalities, we essentially show that our
formula is independent of D. We also prove (again modulo some technicalities) that Gross’s
Conjecture 2.6 is actually equivalent to our main Conjecture 3.21. In Section 6 we prove the
p-adic boundedness of the lifted measure ν; in fact, we show that ν is Z-valued. In Section 7
we remark on the consistency of our formula with the norm compatibility relations for Gross–
Stark units. We conclude in Section 8 by studying the case where F is real quadratic, and
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comparing our formulas with those of [7].
We conclude this introduction by remarking that it remains to connect the constructions

of the current article with work of others on the p-adic multiple Gamma-function. This
function was studied using Shintani’s methods and linked to Gross’s conjectures by various
authors, notably Cassou-Nogues [2] and Kashio–Yoshida [13].

It is a pleasure to thank the Centre de Recherches Mathématiques in Montreal, Quebec,
where much of this research was conducted during a visit in the fall of 2005. In particular,
I greatly benefited from discussions with Hugo Chapdelaine, Pierre Charollois, and Henri
Darmon. I am also indebted to Pierre Colmez, whose suggestions were vital for the arguments
of Section 5. Finally, I would like to acknowledge the extraordinary efforts of the anonymous
referees, whose remarkably detailed comments and suggestions greatly improved the quality
of the exposition.

2 The conjectures of Gross

Let F be a totally real field, and let p be a prime of F lying above the rational prime p of
Q. Let H be a finite abelian extension of F such that p splits completely in H. Let S be a
finite set of primes of F containing the archimedean primes, the primes lying above p, and
those ramifying in H. We assume throughout this article that #S ≥ 3, since the only cases
that this excludes have H = F = Q. Write R = S − {p}.

For σ ∈ G = Gal(H/F ), define the partial zeta-function

ζR(σ, s) =
∑

(a,R)=1
σa=σ

Na−s. (1)

The sum is over all integral ideals a ⊂ O that are relatively prime to the elements of R
and whose associated Frobenius element σa ∈ G is equal to σ. The series (1) converges
for Re(s) > 1 and has a meromorphic continuation to C, regular outside s = 1. The zeta-
functions associated to the sets of primes S and R are related by the formula

ζS(σ, s) = (1− Np−s)ζR(σ, s).

Deligne and Ribet [9] and Cassou-Nogues [1] independently proved the existence of a
Qp-valued function ζS,p(σ, s), meromorphic on Zp and regular outside s = 1, such that

ζS,p(σ, n) = ζS(σ, n) (2)

for nonpositive integers n ≡ 0 (mod d), where d = [F (µ2p) : F ]. In particular ζS,p(σ, 0) = 0
for all σ ∈ G.

We remark that in (2) we have followed Gross’s normalization of the p-adic zeta-function
as in [11], rather than the more standard normalization of Serre [15]. To be precise, let χ
be a complex character on G, and let ω denote the Teichmuller character. Serre’s p-adic
L-function attached to the character χω satisfies the interpolation property

LS,p(1− n, χω) = LS(1− n, χω1−n)
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for all integers n ≥ 1. The function we have denoted ζS,p(σ, n) in (2) is then given by the
formula

ζS,p(σ, s) =
1

#G

∑
χ∈Ĝ

χ−1(σ)LS,p(s, χω),

where the sum is over all irreducible characters χ of G.

2.1 The first Gross conjecture

Define the group

Up = {u ∈ H× : |u|P = 1 if P does not divide p}. (3)

Here P ranges over all finite and archimedean places of H; in particular each complex
conjugation in H acts as inversion on Up. For each divisor P of p in H, extend the P-adic
valuation ordP : Up → Z to the tensor product Q⊗ Up → Q. Gross proved:

Proposition 2.1 ([11], Proposition 3.8). For each divisor P of p in H, there is a unique
element u = u(P) ∈ Q⊗ Up such that

ζR(σ, 0) = ordP(uσ) for all σ ∈ G.

Since p splits completely in H, we have H ⊂ HP
∼= Fp. Let logp : Q×p → Zp be the

branch of the Iwasawa p-adic logarithm for which logp(p) = 0. The map

u 7→ logp NormFp/Qp u

from Up to Zp may be extended to a map Q⊗Up → Qp by tensoring with Q. Gross stated:

Conjecture 2.2 ([11], Conjecture 2.12 and Proposition 3.8). Let u = u(P) be as above.
Then

ζ ′S,p(σ, 0) = − logp NormFp/Qp(u
σ) for all σ ∈ G.

In order to state an integral version of Conjecture 2.2, we introduce an auxiliary finite
set T of primes of F , disjoint from S. Define the partial zeta-function associated to the sets
S and T by the group ring equation∑

σ∈G

ζS,T (σ, s)[σ] =
∏
η∈T

(1− [ση] Nη1−s)
∑
σ∈G

ζS(σ, s)[σ]. (4)

Suppose now that T satisfies the following assumption:

Assumption 2.3. The set T contains at least two primes of different residue characteristic
or at least one prime η with absolute ramification degree at most `− 2, where η lies above `.
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When this assumption is satisfied, the values ζS,T (K/F, σ, 0) are rational integers for any
abelian extension K/F unramified outside S and any σ ∈ Gal(K/F ) (see [12, Proposition
3.7] and the preceding discussion). In Section 3.3, we will make an even stronger assumption
on T in order to ensure the integrality at 0 of a more general type of zeta-function. We now
state an integral version of Conjecture 2.2. While this conjecture does not appear explicitly
in the literature, we shall see shortly that it lies between Gross’s first Conjecture 2.2 and his
second Conjecture 2.6.

Conjecture 2.4. There exists uT = uT (P) ∈ Up such that ordP(uσ
T ) = ζR,T (σ, 0) and

ζ ′S,T,p(σ, 0) = − logp NormFp/Qp(u
σ
T )

for all σ ∈ G.

Here ζS,T,p(σ, s) is defined in terms of ζS,p(σ, s) as in (4), with Nη replaced by 〈Nη〉; for
x ∈ Z×p we define 〈x〉 to be the unique element of 1 + 2pZp whose ratio with x is a root of
unity. The element

gT :=
∏
η∈T

(1− [ση]
−1 Nη)

is invertible in the group ring Q[G], and letting u = u
g−1

T
T shows that Conjecture 2.4 implies

Conjecture 2.2. Conversely, letting uT = ugT shows that Conjecture 2.2 implies the existence
of an element uT ∈ Up⊗Q (but not necessarily Up) satisfying the conditions of Conjecture 2.4.

2.2 Stark’s conjecture and the second Gross conjecture

We now remove the assumption on S that it contain all the primes of F lying above p. Thus
S is required only to contain p, the archimedean primes, and those which ramify in H. We
have the following conjecture of Stark, as formulated by Gross:

Conjecture 2.5 ([12], Conjecture 7.4). There exists an element uT ∈ Up such that uT ≡ 1
(mod T ) and for all σ ∈ G we have

ordP(uσ
T ) = ζR,T (H/F, σ, 0). (5)

Assumption 2.3 implies that there are no non-trivial roots of unity in H which are con-
gruent to 1 modulo T . Thus the p-unit uT , if it exists, is unique. Note also that our uT

is actually the inverse of the u in [12, Conjecture 7.4]; we have made this choice to remain
consistent with Proposition 2.1 and Gross’s earlier paper [11].

In [12], Gross stated a conjecture which simultaneously strengthens Conjecture 2.4 and
Conjecture 2.5. Let K be an auxiliary finite abelian extension of F containing H and
unramified outside S. Let

recp : F×p → A×F → Gal(K/F ) (6)

denote the reciprocity map of local class field theory. From H ⊂ HP
∼= Fp we may evaluate

recp on any element of H×; the image will be contained in Gal(K/H).
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Conjecture 2.6 ([12], Conjecture 7.6). Assume Conjecture 2.5. For all σ ∈ G we have

recp(u
σ
T ) =

∏
τ∈Gal(K/F )

τ |H=σ−1

τ ζS,T (K/F,τ−1,0). (7)

We remark that ∑
τ∈Gal(K/F )

τ |H=σ−1

ζS,T (K/F, τ, 0) = ζS,T (H/F, σ−1, 0) = 0,

so the right side of (7) lies in Gal(K/H). Also, the inverses in (7) appear because as noted
above, our uT is the inverse of Gross’s u.

The conjectural element uT ∈ Up satisfying Conjecture 2.6 is called the Gross–Stark unit
for the data (S, T, H, P). Gross did not prove that Conjecture 2.6 was a strengthening of
Conjecture 2.4, but he was certainly aware of this fact; for completeness, we include the
proof in the next section.

3 Measures

The remainder of this paper is devoted to proposing a formula for the value in F×p of the
element uT of Conjecture 2.6. To set the stage for this formula, we will restate Conjecture
2.6 in terms of p-adic measures.

Definition 3.1. Let G be a compact open subset of a quotient of A×F , and let A be any
abelian group. An A-valued distribution µ on G is an assignment µ(U) ∈ A to each compact
open set U ⊂ G, such that µ(U ∪ V ) = µ(U) + µ(V ) for disjoint compact opens U and V .

In this article, we will most often be concerned with distributions satisfying µ(G) = 0.

Definition 3.2. A Qp-valued distribution on G is called a p-adic measure if it takes values
in a p-adically bounded subgroup A ⊂ Qp.

We will consider two types of integrals on G.

The Additive Integral. Let f : G → Zp be a continuous map, and let µ be a Zp-valued
measure on G. Define∫

G

f(x)dµ(x) := lim
←−

∑
a (mod pn)

a · µ(f−1(a + pnZp)) ∈ Zp,

where the inverse limit is over all positive integers n.

The Multiplicative Integral. Let I be an abelian topological group which may be written as
an inverse limit of discrete groups:

I = lim
←−

Iα.
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Denote the group operation on I multiplicatively. For each i ∈ Iα, denote by Ui the open
subset of I consisting of those elements which map to i in Iα. Let f : G → I be a continuous
map and let µ be a Z-valued measure. We define the multiplicative integral, written with a
cross through the integration sign, by:

×
∫

G

f(x)dµ(x) = lim
←−

∏
i∈Iα

iµ(f−1(Ui)) ∈ I. (8)

Note that for each α, only finitely many of the sets f−1(Ui) are non-empty since G is compact
and f is continuous; thus the product in (8) makes sense.

3.1 Restatement of Gross’s conjecture

Let f be an integral ideal of F relatively prime to p, and denote by Hf the narrow ray class
field of F of conductor f. The map which sends a fractional ideal b relatively prime to f

to its Frobenius element σb induces an isomorphism between the narrow ray class group of
conductor f, denoted Gf, and the Galois group Gal(Hf/F ).

As in Section 2, let H be a finite abelian extension of F unramified outside S, in which p

splits completely. Let H ′ be a subfield of H containing F . Suppose that uT ∈ Up(H) satisfies
Conjecture 2.6 for the data (S, T, H, P). Then it is easy to verify that NH/H′(uT ) satisfies
the conjecture for the data (S, T, H ′, P ∩ OH′). This is the “norm compatibility relation”
for Gross–Stark units.

In attempting to construct Gross–Stark units, it therefore suffices to consider, for every
ideal f, the case where H is the maximal subextension of Hf/F in which p splits completely;
we now fix this choice of H. The finite set S contains at least p, the primes dividing f, and
the archimedean primes. Formula (7) of Conjecture 2.6 gives p-adic information about uT

when the extension K/F is ramified above p. Define Hfp∞ to be the union of the narrow ray
class fields Hfpm for all positive integers m. We will now analyze what information about
uT can be gleaned from Conjecture 2.6 applied to all fields K ⊂ Hfp∞ . At the end of this
section, we will conduct a similar analysis for all possible fields K.

For a fractional ideal a prime to S, denote by σa the Frobenius automorphism attached
to a in Gal(Hfp∞/F ). The map (6) induces an isomorphism

recp : F×p /Êp(f) ∼= Gal(Hfp∞/H), (9)

where Ep(f) denotes the group of totally positive p-units of F that are congruent to 1 modulo

f, and Êp(f) denotes its closure in F×p . (Note that if Leopoldt’s conjecture holds, then Êp(f) is
of finite index in F×p unless p is the only prime above p; in this finite index case, the integral
in Proposition 3.3 below is just a finite product and equation (13) is simply a restatement
of (7) for the finite extension K = Hfp∞ .)

Let e be the order of p in Gf, and suppose that pe = (π) with π ≡ 1 (mod f) and π totally
positive. Then Ep(f) ∼= 〈π〉 × E(f), where E(f) denotes the group of totally positive units
of O that are congruent to 1 modulo f. Note that O := Op − πOp ⊂ F×p is a fundamental
domain for the action of 〈π〉 on F×p .
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Let b be a fractional ideal of F relatively prime to S and T . Let z be an element of F
with z ∈ b−1 and z ≡ 1 (mod f). (For a general element z ∈ F×, the congruence z ≡ 1
(mod f) means that z− 1 ∈ fOf ∩F , where Of is the f-adic completion of O.) Normalize the
p-adic norm by

|α|p = Np−vp(α).

For each compact open set U ⊂ O/Ê(f) and Re(s) > 1 define

ζS(b, U, s) =
∑

a⊂O,(a,S)=1

σa∈σb·recp(U)−1

Na−s = Nb−s
∑

α

(Nα|α|p)−s, (10)

where the second sum ranges over distinct representatives mod E(f) of totally positive

α ∈ (b−1f + z) ∩ U with (α, R) = 1.

The condition α ∈ b−1f + z is equivalent to α ∈ b−1, α ≡ 1 (mod f), and it thus does not
depend on the choice of z. The equality of the two sums in (10) follows from the change of
variables ab−1 = (α)p−vp(α) and the fact that recp(α)−1 = σ(α)p−vp(α) . For a fixed compact
open set U , the function ζS(b, U, s) is a finite sum of partial zeta-functions attached to some
finite extension Hfpm/F .

We define ζS,T (b, U, s) in analogy with (4); suppose that∏
η∈T

(1− [η] Nη1−s) =
∑

a

ca(s)[a]

in the group ring of fractional ideals with coefficients in the ring of complex valued functions
on C, and define

ζS,T (b, U, s) =
∑

a

ca(s)ζS(a−1b, U, s). (11)

We may then extend ζS,T by analytic continuation and define a Z-valued measure µ(b)

on O/Ê(f) by:
µ(b, U) := ζS,T (b, U, 0). (12)

Note that in particular

µ(b,O/Ê(f)) = ζS,T (H/F, b, 0) = 0.

Proposition 3.3. If Conjecture 2.6 is true, then we have the formula

uσb
T = πζR,T (Hf/F,b,0) ×

∫
O/ dE(f)

x dµ(b, x) (13)

in F×p /Ê(f).

The integrand x in (13) is the inclusion O/Ê(f) ↪→ F×p /Ê(f).
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Proof. The contribution of the integral to the p-adic valuation of the right side of (13) is

e−1∑
i=0

i · µ(b, piO×p /Ê(f)) =
e−1∑
i=0

i · ζS,T (Hf/F, bp−i, 0)

=
e−1∑
i=0

i ·
(
ζR,T (Hf/F, bp−i, 0)− ζR,T (Hf/F, bp−i−1, 0)

)
=

(
e∑

i=1

ζR,T (Hf/F, bp−i, 0)

)
− e · ζR,T (Hf/F, bp−e, 0)

= ζR,T (H/F, b, 0)− e · ζR,T (Hf/F, b, 0). (14)

Combining (14) with the power of π in the right side of (13), the entire expression has the
correct p-adic valuation ζR,T (H/F, b, 0) as prescribed by (5).

It remains to check that the image in F×p /Êp(f) of the integral in (13) equals the value
proposed for uσb

T by Conjecture 2.6. Let K = Hfpm , and let Upm be the subgroup of O×p
consisting of those elements that are congruent to 1 (mod pm). Then recp provides an
isomorphism recp : F×p /(UpmEp(f)) → Gal(K/H). Applying the inverse of recp to equation
(7) and using the change of variables α = rec−1

p (τσb) yields

uσb
T ≡

∏
α∈F×

p /(UpmEp(f))

αζS,T (K/F,σb·recp α−1,0) (mod UpmEp(f)).

To compare with the right side of (13), note that each element α ∈ F×p /(UpmEp(f)) has a
unique representative α̃ ∈ O/(UpmE(f)). It remains to prove that if Uα̃ denotes the inverse

image of α̃ in O/Ê(f), then

µ(b, Uα̃) = ζS,T (K/F, σb · recp α−1, 0).

But this is exactly how the measure µ(b) has been defined.

We now present a version of equation (13) which is equivalent to Conjecture 2.6. Equation
(13) packages together equation (7) for all extensions K ⊂ Hfp∞ ; to obtain an equality which
encapsulates equation (7) for all possible extensions K, we must allow ramification at all
primes in S. Let g denote the product of the finite primes in S which do not divide fp. Then
the compositum of fields K for which Conjecture 2.6 may be applied is HS := H(fpg)∞ . For
v|fg, let Uv,f denote the group of elements of O×v that are congruent to 1 modulo fOv; in
particular Uv,f = O×v for v|g. Let U =

∏
v|fg Uv,f. The reciprocity map induces an isomorphism

recS : (F×p × U)/Ep(f) ∼= Gal(HS/H). (15)

Here we have denoted by Ep(f) the closure of Ep(f) diagonally embedded in F×p × U ,

to distinguish it from Êp(f) ⊂ F×p . We may now carry over our previous methods with

O/Ê(f) replaced by (O×U)/E(f). More precisely, define a measure µ(b) on this latter space
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via equations (10), (11), and (12) with the notational change that in equation (10), U is
a compact open subset of (O × U)/E(f), the map recp is replaced by recS, and σa, σb are
elements of Gal(HS/F ). Then we have:

Proposition 3.4. Conjecture 2.6 is equivalent to the existence of an element uT ∈ Up with
uT ≡ 1 (mod T ) and

(uσb
T , 1) = πζR,T (Hf/F,b,0) ×

∫
O×U/E(f)

x dµ(b, x) (16)

in (F×p × U)/E(f), for all fractional ideals b relatively prime to S.

Define
D(f, g) = {x ∈ F×p : (x, 1) ∈ E(f) ⊂ F×p × U}.

Proposition 3.4 may be interpreted as stating that Gross’s conjecture is equivalent to a for-
mula for the image of uT in F×p /D(f, g). If S does not contain any primes lying above p other

than p, then D(f, g) has finite index in Ê(f). Even without this assumption, Leopoldt’s con-
jecture implies that D(f, g) will have positive dimension as a p-adic Lie group (i.e. D(f, g)⊗Qp

will be nonzero) unless S contains all of the primes above p and Fp = Qp. Note that this is
precisely the case when Gross’s first Conjecture 2.4 already determines the image of uT in
F×p up to a root of unity.

By expanding the set S in an appropriate way, one can shrink the subgroup D(f, g) to
gain more p-adic information about uT . Repeating this process indefinitely one can specify
uT in F×p to any specified degree of p-adic accuracy. However, there is a certain lack of
explicitness involved in this process. To specify uT modulo pm, one must first adjoin enough
primes to S such that D(f, g) ⊂ 1 + pmOp. Then one must calculate the integral in the

right-side of (16), and find a representative mod E(f) of the form (x, 1). Then x is uniquely
determined mod pm, and if the primes adjoined to S were chosen appropriately one can
determine uT mod pm from x. This is discussed in greater detail in Theorem 5.18.

The goal of this article is to provide one concise formula for uT in all cases, avoiding the
process of artificially enlarging S and the technicalities introduced therein. We conclude this
section by proving:

Proposition 3.5. Conjecture 2.6 implies Conjecture 2.2.

Proof. We will prove Conjecture 2.2 via Conjecture 2.4. To place ourselves in the setting
where these two conjectures apply, assume that S contains all the primes dividing p. Let
N: F×p × U → Z×p denote the norm map, which sends an element (xv)v∈S to the p-adic unit
part of

∏
v|p NormFv/Qp xv. (By p-adic unit part we mean that the appropriate power of p

is divided out to obtain an element of Z×p .) For a totally positive element x ∈ O whose
diagonally embedded image in

∏
v∈S F×v lies in F×p × U , the value of Nx is the p-adic unit

part of the image of NormF/Q x in Zp. In particular, Ep(f) lies in the kernel of N.

Deligne and Ribet [9] and Cassou-Nogues [1] proved that the measures µ on O×U/E(f)
have the following interpolation property:

ζS,T (σb, s) =

∫
O×U/E(f)

(Nx)−sdµ(b, x) (17)
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for nonpositive integers s. For a precise reference for (17) in the case where T is the set
containing one ideal c, see the last two subsections of the introduction in [9]. The ideal f of
[9] is played by our fgp, and the function ε on the narrow ray class group of conductor fgp

is the characteristic function of the set of ideals a such that σa|H = σb|H . In [9], µc,1 is a
certain measure on Gal(HS/F ), and via

(O× U)/E(f) ↪→ (F×p × U)/Ep(f) ∼= Gal(HS/H) ↪→ Gal(HS/F )

one checks that we have an equality of measures µ(b) = ε · µc,1. Equation (17) above is then
a restatement of the equation at the top of page 232 in [9].

When s ≡ 0 (mod 2(p−1)), the left side of (17) equals the p-adic zeta-function ζS,T,p(σb, s),
by definition. Furthermore, for such s, the function (Nx)−s may be replaced by 〈Nx〉−s. Thus
we have

ζS,T,p(σb, s) =

∫
O×U/E(f)

〈Nx〉−sdµ(b, x)

for all s ∈ 2Zp. Differentiating, we obtain

ζ ′S,T,p(σb, 0) = −
∫

O×U/E(f)

logp Nx dµ(b, x).

Proposition 3.4 then shows that Conjecture 2.6 implies Conjecture 2.4 and hence Conjec-
ture 2.2.

On the Galois side, the map N in the proof of Proposition 3.5 is simply the restriction from
Gal(HS/H) to Gal(Q(µp∞)/Q) ∼= Z×p . Thus Conjecture 2.4 is equivalent to Conjecture 2.6
for K restricted to lie in the cyclotomic Zp-extension of H.

3.2 A lifted measure

We now introduce our method to find an exact formula for uT in F×p , rather than just modulo

Ê(f) or D(f, g). As above, write pe = (π) with π totally positive and π ≡ 1 (mod f). Let b

be a fractional ideal of F relatively prime to S and T . Motivated by [7], we will attempt

to define a measure ν(b) on O such that its push forward to O/Ê(f) under the natural

projection is equal to µ(b); in other words, for a compact open U ⊂ O/Ê(f) with inverse

image Ũ in O, we will require ν(b, Ũ) = µ(b, U). We will then propose a formula of the form

uσb
T = ε · πζR,T (Hf/F,b,0) ×

∫
O

x dν(b, x) (18)

in F×p , where ε ∈ E(f) is an “error term” defined in such a way that the right hand side of
(18) depends only on σb ∈ Gal(H/F ); in particular our formula will be independent of the
choice of π generating pe. The fact that ν(b) pushes forward to µ(b) implies that (18) is
compatible with (13).

Ideally, we would define the measure ν by reconsidering, for U ⊂ O, equation (10).
However, the condition on α in the sum of (10) is only well-defined modulo E(f). Our

12



solution to this dilemma is to restrict the sum to a particular fundamental domain for
the action of E(f) on b−1f + z; the condition α ∈ U will then be well-defined for α in
the fundamental domain and U ⊂ O. The fundamental domain we will take will be the
intersection of b−1f + z with a union of simplicial cones, as introduced by Shintani [19] and
described below in Section 3.3. Shintani’s motivation was to prove the rationality of the
partial zeta-functions of F at nonpositive integers (which had been proven earlier by Siegel
[16], [17], [18]), and to provide explicit formulas for these values.

The idea of using Shintani’s method to construct the p-adic zeta-functions of totally real
fields goes back to Cassou-Nogues [1].

3.3 Shintani’s method

Suppose that [F : Q] = n, and let I denote the set of real embeddings of F . The field F
may be embedded in RI by x 7→ (xι)ι∈I . Under this embedding, any fractional ideal of F is
a lattice in RI . The group F× acts on RI with x ∈ F acting by multiplication by xι on the
ι-component of any vector in RI . Denote by Q the positive “quadrant” (R+)I . For linearly
independent v1, . . . , vr ∈ Q, define the simplicial cone

C(v1, v2, . . . , vr) =

{
r∑

i=1

civi ∈ Q : ci > 0

}
.

Definition 3.6. A Shintani cone is a simplicial cone C(v1, v2, . . . , vr) generated by elements
vi ∈ F ∩ Q. A Shintani set is a subset of Q which can be written as a finite disjoint union
of Shintani cones. For a cone C(v1, . . . , vr) with vi ∈ F , the vi are specified uniquely if we
require that they lie in O and are not divisible in O by any rational integer; these vi are
called the generators of the cone C.

Proposition 3.7 (Shintani [19], Proposition 4). There exists a Shintani set D which is a
fundamental domain for the action of E(f) on Q, i.e. such that

Q =
⋃

ε∈E(f)

εD (disjoint union).

We call a set D satisfying Proposition 3.7 a Shintani domain. For example, when F is
real quadratic, we may take D = C(1, ε) ∪ C(1) for a generator ε of E(f).

Definition 3.8. A prime ideal η of F is called good for a Shintani cone C if:

• Nη is a rational prime `;

• the cone C may be written C = C(v1, . . . , vr) with vi ∈ O and vi 6∈ η.

Definition 3.9. A prime η is called good for a Shintani set D if D may be written as a finite
disjoint union of Shintani cones for which η is good.

In order to demonstrate the consistency of these two definitions, we prove:

13



Proposition 3.10. Let C be a Shintani cone, and let C =
⊔

Cα be a decomposition of C
as a finite disjoint union of other Shintani cones. Then each generator of C appears as a
generator of one of the Cα.

Proof. Let the generators of C be v1, . . . , vr. The topological closure of C in RI is

C =

{
r∑

i=0

civi : ci ≥ 0

}
.

The point v1 lies in C and hence lies in some Cα. If Cα = C(w1, . . . , ws), we therefore have

v1 =
s∑

i=1

ciwi with ci ≥ 0.

Let i be an index of the sum above such that ci > 0. Then v = v1 − ci

2
wi lies in Cα, and

hence lies in C. But wi lies in Cα, hence also C, and can therefore be written

wi =
r∑

k=1

akvk with ak ≥ 0.

Plugging this expression into the definition of v, we see that the expression of v as a linear
combination of the vk has a negative coefficient of vk for all k 6= 1 with ak > 0. As this
would contradict v ∈ C, we must have ak = 0 for k > 1. Thus wi = a1v1 as desired.

We now impose the following important assumption on the sets S and T :

Assumption 3.11. Assume that no prime of S has the same residue characteristic as any
prime in T , and that no two primes in T have the same residue characteristic.

Let b be a fractional ideal of F relatively prime to S and to the residue characteristic of
every prime in T (we will write this as “b is prime to char T” from now on). Let z ∈ b−1

be such that z ≡ 1 (mod f), and let D be a Shintani set. For each compact open U ⊂ Op,
define for Re(s) > 1:

ζR(b,D, U, s) = Nb−s
∑

α∈(b−1f+z)∩D
α∈U,(α,R)=1

Nα−s. (19)

Define ζR,T (b,D, U, s) as in (11); in particular, if Nη = ` and T = {η}, we have

ζR,T (b,D, U, s) := ζR(b,D, U, s)− `1−sζR(bη−1,D, U, s).

It follows from Shintani’s work in [19] that the function ζR,T (b,D, U, s) has a meromorphic
continuation to C. Indeed, in Section 6, we will deduce this fact from [19, Proposition 1 of
§1.1], and show:

Proposition 3.12. If T contains a prime η that is good for a Shintani cone C and Nη = `,
then we have

ζR,T (b, C, U, 0) ∈ Z[1/`].

Furthermore, the denominator of ζR,T (b, C, U, 0) is at most `n/(`−1).
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To ensure integrality of our zeta-functions at 0, we propose:

Definition 3.13. The set T is good for a Shintani set D if D can be written as a finite disjoint
union of Shintani cones D =

⋃
Ci such that for each cone Ci there are at least two primes in

T that are good for Ci (necessarily of different residue characteristic by Assumption 3.11),
or one prime η ∈ T which is good for Ci such that Nη ≥ n + 2.

Let us assume that T is good for D. Then Proposition 3.12 implies that

ζR,T (b,D, U, 0) ∈ Z.

Define a Z-valued measure ν(b,D) on Op by

ν(b,D, U) := ζR,T (b,D, U, 0). (20)

For any Shintani domain D, it is clear that the push forward to O/Ê(f) of the restriction of
ν(b,D) to O is equal to µ(b). In particular we have

ν(b,D,O) = ζS,T (H/F, b, 0) = 0. (21)

Note also

ν(b,D,Op) = ζR,T (Hf/F, b, 0) and ν(b,D,O×p ) = ζS,T (Hf/F, b, 0). (22)

In order to define the “error term” ε appearing in (18), and also later to consider the
dependence of our constructions on choice of Shintani domain D, it will be necessary to
consider the intersections between distinct Shintani domains.

Lemma 3.14. The intersection of two Shintani sets is a Shintani set. For two Shintani sets
D and D′ there exists a finite number of ε ∈ E(f) such that εD ∩D′ is nonempty.

Proof. The first claim of the lemma was proven by Shintani [19, Corollary to Lemma 2]. For
the second claim, define a topological isomorphism log : Q → RI by log((xι)ι∈I) = (log xι)ι∈I .
The log map restricts to give a topological isomorphism between

Z0 =

{
(xι)ι∈I ∈ Q :

∏
ι∈I

xι = 1

}
.

and the hyperplane

Z =

{
(xι)ι∈I :

∑
ι∈I

xι = 0

}
⊂ RI .

Define a map λ : Q → Z by the formula

λ : x = (xι)ι∈I 7→ log(x)−

(
1

n

∑
ι∈I

log xι

)
(1, 1, . . . , 1).

In other words, λ is the composition of the natural retraction from Q to Z0 (which sends a
vector in Q to the intersection of the real line it generates with Z0) with log : Z0 → Z.

Define Y and Y ′ to be the topological closures of λ(D) and λ(D′), respectively. The
subgroup log E(f) is a discrete lattice in Z, so there are at most finitely many ε ∈ E(f) such
that the compact sets Y + log ε and Y ′ intersect. This gives the desired result.
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The following proposition appears already as Lemma 2 in [23], but we include the proof
for completeness.

Proposition 3.15. Let D and D′ be Shintani domains. We may write D and D′ as finite
disjoint unions of the same number of simplicial cones

D =
d⋃

i=1

Ci, D′ =
d⋃

i=1

C ′i, (23)

with C ′i = εiCi for some εi ∈ E(f), i = 1, . . . , d.

Proof. Write D and D′ as finite disjoint unions of simplicial cones D =
⋃

B, D′ =
⋃

B′.
By Lemma 3.14, for each B and B′ there exists a finite number of ε ∈ E(f) such that
B ∩ εB′ is nonempty; for each such ε we can decompose B ∩ εB′ as a finite disjoint union of
simplicial cones C. Letting C ′ = ε−1C, we have decompositions D =

⋃
C and D′ =

⋃
C ′ as

desired.

Definition 3.16. A decomposition as in (23) is called a simultaneous decomposition of the
Shintani domains (D,D′). A set T is good for the pair (D,D′) if there is a simultaneous
decomposition as in (23) such that such that for each cone Ci there are at least two primes
in T that are good for Ci, or one prime η ∈ T which is good for Ci such that Nη ≥ n + 2. If
β ∈ F× is totally positive, then T is β-good for D if it is good for the pair (D, β−1D).

Assume now that T is π-good for the Shintani domain D. This property is independent
of choice of π generating pe. Furthermore, all but finitely many primes η with Nη prime are
π-good for D. In particular, the set of such primes has Dirichlet density 1. In the special
case p = (p), the condition that η is π-good for D reduces to the condition that η is good
for D.

Definition 3.17. Define the “error term”

ε(b,D, π) :=
∏

ε∈E(f)

εν(b,εD∩π−1D,Op). (24)

Lemma 3.14 implies that only finitely many of the exponents in (24) are nonzero. Propo-
sition 3.12 and the assumption that T is π-good for D imply that the exponents are integers.
We may now state our putative formula for the Gross–Stark unit uT .

Definition 3.18. Let D be a Shintani domain and assume that T is π-good for D. Define

uT (b,D) := ε(b,D, π) · πζR,T (Hf/F,b,0) ×
∫

O

x dν(b,D, x) ∈ F×p . (25)

As our notation suggests, we have:

Proposition 3.19. The element uT (b,D) does not depend on the choice of generator π of
pe.
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Before proving the proposition we prove the following general lemma, which will be
extremely useful in future change of variable computations.

Lemma 3.20. Let D be a Shintani set such that T is good for D, and let U be a compact
open subset of Op. Let b be a fractional ideal of F , and let β ∈ F× be totally positive such
that β ≡ 1 (mod f) and ordp(β) ≥ 0. Suppose that b and β are relatively prime to R and
char T . Let q = (β)p− ordp(β). Then

ν(bq,D, U) = ν(b, βD, βU)

and hence if U ⊂ O we have

×
∫

U

x dν(bq,D, x) = β−ν(b,βD,βU) ×
∫

βU

x dν(b, βD, x).

Proof. Recall the definition

ζR(bq,D, U, s) = N(bq)−s
∑

α∈(b−1β−1f+z)∩D
α∈U,(α,R)=1

Nα−s,

where z ∈ b−1q−1 and z ≡ 1 (mod f). Note that we have replaced the condition α ∈ b−1q−1

by α ∈ b−1β−1, since the condition ordp(α) ≥ 0 is already ensured by α ∈ U . Letting α′ = αβ
and noting that β ≡ 1 (mod f), the condition on α can be written: α′ ∈ (b−1f+z′)∩βD∩βU ,
where z′ ∈ b−1 and z′ ≡ 1 (mod f). Thus we have

ζR(bq,D, U, s) = ζR(b, βD, βU, s)

and the first claim of the lemma follows. For the second, we calculate

×
∫

U

x dν(bq,D, x) = ×
∫

U

x dν(b, βD, βx)

= ×
∫

βU

(β−1y) dν(b, βD, y)

= β−ν(b,βD,βU) ×
∫

βU

y dν(b, βD, y).

We may now demonstrate the independence of the definition of uT (b,D) on the choice of
π.

Proof of Proposition 3.19. Consider the effect on the formula for uT when π is replaced
by πγ for γ ∈ E(f). Lemma 3.20 implies that that for any Shintani set D′ for which T is
good, we have

ν(b, γ−1D′,Op) = ν(b,D′, γOp) = ν(b,D′,Op).
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Thus

ε(b,D, πγ) =
∏

ε∈E(f)

εν(b,εD∩π−1γ−1D,Op)

=
∏

ε∈E(f)

εν(b,εγD∩π−1D,Op)

= ε(b,D, π) ·
∏

ε∈E(f)

γ−ν(b,εγD∩π−1D,Op)

= ε(b,D, π) · γ−ν(b,π−1D,Op)

= ε(b,D, π) · γ−ζR,T (Hf/F,b,0),

by (22). This demonstrates the independence of uT on the choice of π.

3.4 The conjectural formula for the Gross–Stark unit

Since p splits completely in H, we have an embedding H ⊂ Fp. We now propose:

Conjecture 3.21. Let e be the order of p in Gf, and suppose that pe = (π) with π totally
positive and π ≡ 1 (mod f). Let D be a Shintani domain and let T be π-good for D. Let b

be a fractional ideal of F relatively prime to S and char T . We have:

1. The element uT (b,D) ∈ F×p depends only on the class of b ∈ Gf/〈p〉 and no other
choices, including the choice of D, and hence may be denoted uT (σb) where σb ∈
Gal(H/F ).

2. uT (σb) ∈ Up and uT (σb) ≡ 1 (mod T ).

3. (Shimura Reciprocity Law) For any fractional ideal a of F prime to S and char T ,

uT (σab) = uT (σb)
σa . (26)

In Section 5 we will analyze the dependence of uT (b,D) on the choices of b and D. We
prove that when D is restricted to a certain subset of all possible Shintani domains for which
T is π-good, then uT (b,D) indeed depends only on σb ∈ Gal(H/F ), up to multiplication
by a root of unity. When n = 2, the restriction on the domain D and the root of unity
ambiguity do not occur, i.e., we prove part (1) of Conjecture 3.21 in this case.

Theorem 3.22. Conjecture 3.21 implies Conjecture 2.6.

Proof. The embedding H ⊂ Fp corresponds to a choice of a prime P of H above p. The
fact that ν(b,D)|O pushes forward to µ(b) implies that the element uT ((1),D) satisfies (13)
if Conjecture 3.21 is true. We must show, however, that the stronger equality (16) holds.

To this end, extend the definition of ν to a measure on Op×U by defining ν(b,D, U) ∈ Z
via equations (19) and (20), for compact open U ⊂ Op×U . The push forward of ν(b,D)|O×U
to O× U/E(f) is µ(b). The projection of

ε(b,D, π) · πζR,T (Hf/F,b,0) ×
∫

O×U
x dν(b,D, x) ∈ F×p × U (27)
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onto F×p is uT (b,D). To show that (16) holds for uT (b,D), we must prove that the projection
of (27) onto U is (1, . . . , 1). Let v be a finite prime in R. Define two measures ν0(b,D) and
ν1(b,D) on Uf,v by the rules:

ν0(b,D, U) = ν(b,D,Op × U ×
∏

w∈R−{v}

Uf,w)

and
ν1(b,D, U) = ν(b,D, πOp × U ×

∏
w∈R−{v}

Uf,w).

We must show that

×
∫

Uf,v

x dν1(b,D, x)÷×
∫

Uf,v

x dν0(b,D, x) = ε(b,D, π) · πζR,T (Hf/F,b,0)

in Uf,v. It follows from an argument nearly identical to the proof of Lemma 3.20 that

ν1(b,D, U) = ν0(b, π−1D, π−1U).

Thus

×
∫

Uf,v

x dν1(b,D, x) = ×
∫

Uf,v

x dν0(b, π−1D, π−1x)

= πν0(b,π−1D,Uf,v) ×
∫

Uf,v

x dν0(b, π−1D, x)

= πζR,T (Hf/F,b,0) ×
∫

Uf,v

x dν0(b, π−1D, x), (28)

where (28) follows from (22). We are therefore reduced to proving

×
∫

Uf,v

x dν0(b, π−1D, x)÷×
∫

Uf,v

x dν0(b,D, x) = ε(b,D, π). (29)

Since D is a fundamental domain for the action of E(f) on Q, we have

×
∫

Uf,v

x dν0(b, π−1D, x) =
∏

ε∈E(f)

×
∫

Uf,v

x dν0(b, εD ∩ π−1D, x) (30)

and similarly

×
∫

Uf,v

x dν0(b,D, x) =
∏

ε∈E(f)

×
∫

Uf,v

x dν0(b,D ∩ ε−1π−1D, x)

=
∏

ε∈E(f)

×
∫

Uf,v

x dν0(b, εD ∩ π−1D, εx)

=
∏

ε∈E(f)

ε−ν0(b,εD∩π−1D,Uf,v) ×
∫

Uf,v

x dν0(b, εD ∩ π−1D, x). (31)

Combining (30) and (31), we obtain (29) as desired.
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4 A computation

We are indebted to Kaloyan Slavov for producing the following computational evidence
for Conjecture 3.21. For the details, including the algorithm and code used to practically
implement the theoretical constructions of this article, we refer to [20].

Let F = Q(w) be the totally real cubic field defined by the equation w3+2w−6w−1 = 0.
Let f = q2, where q is the unique prime of F with Nq = 2. The narrow ray class field Hf has
degree 4 over F and Galois group

Gf = 〈(3), q′〉 ∼= Z/2Z× Z/2Z.

Let p = (5) and let η be the unique prime of F with Nη = 11. We choose the minimal
S = {∞1,∞2,∞3, q, p} and let T = {η}. Since p ≡ 1 (mod f), we have H = Hf. Slavov
computed:

ζR,T (H/F, b, 0) =


−10, if b = 1,

10, if b = (3),

−10, if b = q′,

10, if b = (3)q′.

(32)

The fact that ζR,T (H/F, b, 0) = ζR,T (H/F, bq′, 0) for all b implies that the Gross–Stark unit
should satisfy uT = u

σq′
T , i.e. uT should be defined over a quadratic extension of F in H.

Choosing a Shintani domain D of the form described by Colmez in [4], Slavov computed:

A = ×
∫
O×p

x dν(b,D, x)

≡ 14138w2 + 10366w + 10366 (mod 56)

in Op = Z5[w] for b = (q′)2, a representative of the trivial class. Interestingly, this calculation
was faster than that for b = (1). Conjecture 3.21 would imply that the minimal polynomial
of uT (b,D) over F is

x2 −
(

A

510
+

510

A

)
x + 1. (33)

The fact that the values in (32) are multiples of 10 led to the hope that uT (b,D) is actually
a 10th power in H. By taking a 10th root, we could reduce the size of the coefficients involved
in its minimal polynomial. The value A has two 10th roots in F×p , denoted ±A1/10. A 10th

root uT (b,D)1/10 should have minimal polynomial

x2 −
(

A1/10

5
+

5

A1/10

)
x + 1 ≡ x2 − 1

5
(w2 − w − 10)x + 1 (mod 55).

Note that the p-adic accuracy has decreased upon taking the 10th root. One may now
check that the polynomial x2 − 1

5
(w2 − w − 10)x + 1 indeed defines a quadratic extension

of F contained in Hf, and that the 10th power of a root satisfies the conditions of Stark’s
Conjecture 2.5. The computations here imply that it satisfies Gross’s Conjecture 2.6 up to
an accuracy of 56.
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We conclude by noting that we were helped in this computation by the fact that uT

turned out to be a 10th power. The Gross–Stark unit uT satisfies the polynomial

x2 +
1

510
(−1154763w2 − 6369741w + 5739634)x + 1, (34)

and since these coefficients are larger than 56 = 15625, they would have been impossible to
recognize from our low 5-adic precision estimate. However we would still be able to see that
the middle coefficient of (33) was congruent to that of (34) modulo 56. Since O/56 has 518

elements, this would still be significant evidence for the conjecture in this case.

5 Dependence of uT on choices

We now analyze how uT depends on the choices of b and D; we first consider how uT changes
as the fractional ideal b varies within its class in Gf/〈p〉.

5.1 Dependence on b

Proposition 5.1. Let β ∈ F× be totally positive with β ≡ 1 (mod f) and β relatively prime
to S and char T . We have

uT (b(β),D) = uT (b, βD).

Proof. From Lemma 3.20 and equation (21) we have

×
∫

O

x dν(b(β),D, x) = β−ν(b,βD,O) ×
∫

O

y dν(b, βD, y)

= ×
∫

O

y dν(b, βD, y). (35)

Similarly from Lemma 3.20 one checks that

ε(b(β),D, π) = ε(b, βD, π),

which proves the desired result.

Proposition 5.1 deals with changing b within its class in Gf. We now study what happens
when b is multiplied by an element equivalent to p in Gf.

Proposition 5.2. Let q be relatively prime to S and char T , such that q = p(ρ) where
ρ ∈ F× is totally positive and ρ ≡ 1 (mod f). We have

uT (bq,D) = uT (b, ρD).

Proof. By definition, we have

uT (b, ρD) = ε(b, ρD, π) · πζR,T (Hf/F,b,0) ×
∫

O

x dν(b, ρD, x) (36)
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and

uT (bq,D) = ε(bq,D, π) · πζR,T (Hf/F,bq,0) ×
∫

O

x dν(bq,D, x). (37)

The ratio of the π-power terms in (36) and (37) is

πζR,T (Hf/F,b,0)−ζR,T (Hf/F,bq,0) = π−ζS,T (Hf/F,bq,0). (38)

Lemma 3.20 (with the role of (b,D, β, q) in the lemma being played by (bq, ρD, ρ−1, q−1))
implies that

×
∫

O

x dν(b, ρD, x) = ρν(b,ρD,O) ×
∫

ρ−1O

x dν(bq,D, x)

= ×
∫

ρ−1O

x dν(bq,D, x),

by (21). The ratio of the integral terms in (36) and (37) is therefore equal to

×
∫

ρ−1O
x dν(bq,D, x)

×
∫
O

x dν(bq,D, x)
=
×
∫

πO×p
x dν(bq,D, x)

×
∫
O×p

x dν(bq,D, x)
, (39)

by canceling the intersection of the domains of integration. Another application of Lemma 3.20
allows us to rewrite the numerator of the right side of (39) as:

×
∫

πO×p
x dν(bq,D, x) = πν(bq,π−1D,O×p ) ×

∫
O×p

x dν(bq, π−1D, x). (40)

Now the π-power term in (40) exactly cancels that of (38), by (22). It therefore remains to
prove:

×
∫
O×p

x dν(bq, π−1D, x)

×
∫
O×p

x dν(bq,D, x)
=

ε(bq,D, π)

ε(b, ρD, π)
. (41)

Since D is π-good, we have a simultaneous decomposition

π−1D =
⋃

Ci and D =
⋃

γiCi,

with γi ∈ E(f), such that T is good for each Ci. We have

×
∫
O×p

x dν(bq,D, x) =
∏

i

×
∫
O×p

x dν(bq, γiCi, x)

=
∏

i

(
γ

ν(bq,Ci,O×p )

i ×
∫
O×p

x dν(bq, Ci, x)

)
(42)

=

(∏
i

γ
ν(bq,Ci,O×p )

i

)
×
∫
O×p

x dν(bq, π−1D, x), (43)
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where (42) follows from Lemma 3.20. We now analyze the right side of (41).

ε(bq,D, π)

ε(b, ρD, π)
=

∏
εν(bq,εD∩π−1D,Op)∏
εν(b,ερD∩π−1ρD,Op)

, (44)

where both products run over all ε ∈ E(f). By Lemma 3.20, the exponents in the denominator
of (44) satisfy

ν(b, ερD ∩ π−1ρD,Op) = ν(bq, εD ∩ π−1D, pOp),

as ordp(ρ
−1) = 1. The fraction in (44) therefore simplifies to∏

εν(bq,εD∩π−1D,O×p ) (45)

It is clear from the fact that the Ci are disjoint and inequivalent mod E(f) that for each
ε ∈ E(f), the intersection εD ∩ π−1D is equal to the union of the Ci such that γi = ε−1.
Therefore (45) may be written ∏

i

γ
−ν(bq,Ci,O×p )

i .

Combining with (43), we obtain (41); this concludes the proof.

5.2 Dependence on D
We now study the dependence of uT (b,D) on the choice of Shintani domain D.

Theorem 5.3. Let D and D′ be two Shintani domains such that T is π-good for D and for
D′. If T is good for (D,D′), then uT (b,D) = uT (b,D′).

Proof. Since T is good for (D,D′), we have a simultaneous decomposition

D =
⋃

Ci and D′ =
⋃

γiCi, (46)

with γi ∈ E(f), such that T is good for each Ci. It suffices to demonstrate that uT (b,D) is
unchanged when in the decomposition D =

⋃
Cj, one cone C = Ci is replaced by γC for

some γ ∈ E(f). In other words, if we write G =
⋃

j 6=i Ci, so that D is the disjoint union of
G and C, it suffices to prove uT (b,D) = uT (b,D′) in the case where D′ = G ∪ γC. This
implies the general case (46), because we can “move” from D to D′ with a finite series of
such operations, replacing the cones Ci by γiCi one at a time.

Therefore, suppose that D = G ∪ C and D′ = G ∪ γC. Consider first the integral in the
defining equation (25) of uT . By Lemma 3.20 we have

×
∫

O

x dν(b, γC, x) = γν(b,C,O) · ×
∫

O

x dν(b, C, x),

and thus

×
∫

O

x dν(b,D′, x) = γν(b,C,O) · ×
∫

O

x dν(b,D, x). (47)
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Let us for the moment assume that T is good for each intersection εCi ∩ π−1Cj, for all
ε ∈ E(f). Then ε(b,D, π) may be decomposed into four components:

ε(b,D, π) =
∏

ε

εν(b,εG∩π−1G,Op) (48)

×
∏

ε

εν(b,εG∩π−1C,Op) (49)

×
∏

ε

εν(b,εC∩π−1G,Op) (50)

×
∏

ε

εν(b,εC∩π−1C,Op). (51)

In the corresponding decomposition of ε(b,D′, π) for D′ = G ∪ γC, the terms from (48) and
(51) are unchanged (to see this for (51), one uses Lemma 3.20). For the term corresponding
to (49), we find∏

ε

εν(b,εG∩π−1γC,Op) =
∏

ε

εν(b,εγ−1G∩π−1C,Op)

= γ
P

ε ν(b,εG∩π−1C,Op) ·
∏

ε

εν(b,εG∩π−1C,Op). (52)

Similarly, for the term corresponding to (50) we have∏
ε

εν(b,εγC∩π−1G,Op) = γ−
P

ε ν(b,C∩ε−1π−1G,Op) ·
∏

ε

εν(b,εC∩π−1G,Op). (53)

Combining (52) and (53) we obtain

ε(b,D′, π) = ε(b,D, π) · γ
P

ε ν(b,εG∩π−1C,Op)−ν(b,C∩ε−1π−1G,Op). (54)

Adding and subtracting

ν(b, εC ∩ π−1C,Op) = ν(b, C ∩ ε−1π−1C,Op)

from each term in the exponent of (54), we find

exponent in (54) =
∑

ε

ν(b, εD ∩ π−1C,Op)− ν(b, C ∩ ε−1π−1D,Op)

= ν(b, π−1C,Op)− ν(b, C,Op) (55)

= ν(b, C, πOp)− ν(b, C,Op) (56)

= −ν(b, C,O). (57)

Equation (55) results from the fact that D and π−1D are fundamental domains for the action
of E(f) on Q. Equation (56) follows from Lemma 3.20. Combining (54), and (57), we obtain

ε(b,D′, π) = ε(b,D, π) · γν(b,C,O). (58)
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This along with (47) gives the desired result uT (b,D) = uT (b,D′).
If our assumption that T is good for each intersection εCi ∩ π−1Cj, does not hold, then

the decomposition of ε(b,D, π) in (48)–(51) ceases to make sense because the exponents may
not be integers. However, these exponents are still rational numbers (see section 6) and
only finitely many are non-zero, so they have a common denominator M ∈ Z. Thus we can
make sense of (48)–(51) if we raise both sides to the power M ; the rest of the argument then
shows that (58) holds if we raise both sides to the power M . However, both sides of (58) are
elements of the torsion free group E(f), so we obtain (58) in this case as well; this completes
the proof.

If n = 2, and a set T is good for two simplicial cones, then it is good for their intersection.
Thus if T is good for a Shintani domain D, it is automatically π-good for D. Furthermore, if
T is good for D and D′, it is good for the pair (D,D′). Thus Theorem 5.3 applies whenever
T is good for D and D′ individually. Combined with Propositions 5.1 and 5.2, this implies
that part (1) of Conjecture 3.21 holds when n = 2. Unfortunately, if n > 2, then T may not
be good for the pair (D,D′) even if T is π-good for D and D′ individually. This is because
the process of intersecting two simplicial cones of dimension greater than 2 may introduce
new generators which lie in primes in T . Therefore, we cannot yet conclude that uT (b,D)
is independent of D or choice of b within its class in Gf/〈p〉. However, note that for a given
pair (D,D′), all but finitely many η with Nη prime are good for (D,D′). The next section
shows that if we restrict the possible choices for D, then up to multiplication by a root of
unity, the element uT (b,D) is independent of D. Part of our argument will involve adjoining
primes to the set T , so we will need the following lemma.

Lemma 5.4. Suppose T is π-good for D, and let η be a prime of F that is relatively prime
to S and char T . Then

uT∪{η}(b,D) =
uT (b,D)

uT (bη−1,D)Nη

for all b relatively prime to S, char T , and char η.

Proof. This follows directly from the formula

ζR,T∪{η}(b,D, U, s) = ζR,T (b,D, U, s)− Nη1−sζR,T (bη−1,D, U, s) (59)

and the definition of uT .

5.3 Special domains

Before we delve into the details of this section, we provide some motivation for the definitions
to follow. We would like to show that if D and D′ are Shintani domains for which T is π-good,
then uT (b,D) = uT (b,D′). Unfortunately, Theorem 5.3 requires that T is good for the pair
(D,D′) and uses this fact in a crucial way. Suppose, however, that we can show that there
are infinitely many primes (β) with Nβ prime, β totally positive, and β ≡ 1 (mod f), such
that T is good for the pair (D, βD) and also for the pair (D′, βD′). Then by Proposition 5.1
and Theorem 5.3 we will have

uT (b(β),D) = uT (b, βD) = uT (b,D) (60)
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and similarly
uT (b(β),D′) = uT (b,D′). (61)

Now all but finitely many of the (β) will be good for the pair (D,D′), so we will have

uT∪{(β)}(b,D) = uT∪{(β)}(b,D′).

Using Lemma 5.4, we can write this equation as

uT (b,D)

uT (b(β),D)Nβ
=

uT (b,D)

uT (b(β),D)Nβ
.

Combining this equation with (60) and (61) yields

uT (b,D)1−Nβ = uT (b,D′)1−Nβ.

Thus we would have proven that uT (b,D) is independent of D up to a root of unity in F×p .
Unfortunately, we cannot show the existence of infinitely many such β in general. Instead,

suppose that D′′ is such that T is good for the pair (D,D′′). We will show that if D and D′′
intersect nicely (see Definition 5.7 below), β is sufficiently congruent to 1 modulo powers of
the primes in char T , and λ(β) is sufficiently close to 0, then T is good for the pair (βD,D′′).
The motivation for this is that the conditions on the intersection of D and D′′ and on λ(β)
imply that the intersections of the cones in βD and D′′ are close to those of D and D′′. The
condition on β being `-adically close to 1 for ` ∈ char T implies that the generators of the
cones comprising the intersection of βD and D′′ will not lie in η ∈ T if the generators of the
cones comprising the intersection of D and D′′ do not lie in η.

The condition that T is good for (D,D′′) and (βD,D′′) implies that

uT (b,D) = uT (b,D′′) = uT (b, βD),

by Theorem 5.3. Now we can ignore D′′ and note the equality of the outer terms in this
equation; choosing a common β for D and D′ we can argue as above to conclude that uT (b,D)
equals uT (b,D′) up to a root of unity. Thus we will have proven our independence result as
long as we restrict to the set of D such that there exists an auxiliary D′′ with the properties
above; for such D we will say that T is special (see Definition 5.10). Finally, in practice we
will show the existence of infinitely many β as above, but β will be the ratio of two primes
rather than a prime itself; a slight modification of the argument will ensue. We now proceed
with the formal definitions.

Definition 5.5. For a Shintani set D, let Sp(D) be the smallest Q-vector subspace of F
containing F ∩ D.

For a simplicial cone C = C(v1, . . . , vr) with vi ∈ F , Sp(C) is the Q-span of the vi.

Definition 5.6. For a simplicial cone C = C(v1, . . . , vr), a face of C is the cone generated
by any subset of the vi.

If B is a face of C, we write B ≺ C. Note that B 6⊂ C unless B = C.
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Definition 5.7. Two Shintani cones C and C ′ are said to intersect transversely if for each
pair of faces B = C(v1, . . . , vr) ≺ C and B′ = C(w1, . . . , ws) ≺ C ′ such that B and B′

intersect, the Q-vector space dimension of Sp(B) ∩ Sp(B′) is max(r + s − n, 0), i.e., the
minimal possible dimension of intersection of subspaces of dimensions r and s.

Let D and D′ be two Shintani domains with decompositions

D =
⋃

Ci, D′ =
⋃

C ′j

into disjoint unions of simplicial cones. The decompositions are said to intersect transversely
if for every Ci, Cj, and ε ∈ E(f), the cones εCi and C ′j intersect transversely.

Note that if B and B′ intersect transversely and nontrivially, then

Sp(B ∩B′) = Sp(B) ∩ Sp(B′).

We will require the use of the following lemma from linear algebra, whose proof was com-
municated to us by Gil Alon and Hugo Chapdelaine.

Lemma 5.8. Let V and W be Q-vector subspaces of F , of dimensions r and s, respectively.
There exists a β ∈ F× such that βV and W intersect transversely, i.e. in dimension max(r+
s− n, 0). Furthermore, if we view F×/Q× as a projective space over Q of dimension n− 1,
the set of such β is a Zariski-open subset.

Proof. One immediately reduces to the case r + s = n. Then βV and W having trivial
intersection is equivalent to the non-vanishing of a certain determinant, which one easily
checks is a homogeneous polynomial in the coordinates of β. This implies the second sentence
of the lemma. To show that such a β exists, consider a surjective Q-linear map ϕ : F → W
with kernel V . For each β ∈ F , define ϕβ ∈ EndQ(W ) by the rule ϕβ(w) = ϕ(βw). We
must show that there exists β ∈ F× such that ϕβ is an isomorphism. The set {ϕβ} forms a
Q-vector subspace B ⊂ EndQ(W ) with the property that:

for any nonzero v, w ∈ W, there exists b ∈ B such that b(v) = w. (62)

This is clear from the surjectivity of ϕ and the fact that F is a field. It is a general fact
that for any finite dimensional vector space W over an infinite field, and any space B of
endomorphisms of W satisfying (62), that the space B contains an isomorphism.

We prove this by induction on the dimension of W , the case dim W = 1 being trivial. In
the general case, choose a projection γ : W → W ′ onto a codimension 1 subspace of W . By
the induction hypothesis, the set {(γ ◦ b)|W ′ : b ∈ B} contains an isomorphism of W ′, say
(γ ◦ δ)|W ′ . Let g generate the kernel of γ and let d 6= 0 lie in the kernel of δ. (If δ has no
kernel, we are done.) By (62), there exists b ∈ B such that b(d) = g. Consider now elements
of the form b + t · δ ∈ B, for scalars t. The determinant of the endomorphism γ ◦ (b + t · δ)
of W ′ is a polynomial in t with leading coefficient det(γ ◦ δ) 6= 0. Thus for all but finitely
many t, the map γ induces a surjection from the image of b + t · δ to W ′. By construction, d
lies in the kernel of γ ◦ (b+ t · δ) but not of b+ t · δ. Thus the image of b+ t · δ has dimension
strictly larger than that of W ′, and hence must equal W .
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Lemma 5.9. Let D be a Shintani domain with decomposition D =
⋃

C. The set of totally
positive β ∈ F such that β ≡ 1 (mod f) and that the decompositions

D =
⋃

C and βD =
⋃

βC

intersect transversely is dense in Q.

Proof. Let X ⊂ Q be a closed ball. It suffices to prove that the set of β ∈ F ∩X satisfying
the lemma is dense in X. By compactness, there are only finitely many ε such that εD and
βD can intersect for any β ∈ X. By Lemma 5.8, all β ∈ F ∩Q lying outside a proper Zariski
closed subset satisfy the property that Sp(εB) and Sp(βB′) intersect transversely for each
triple (B, B′, ε); for each such β it follows that D and βD intersect transversely. Thus the
set of such β is dense in Q. Finally, given any such β, the elements β + (1 − β)/(1 + fn)
approach β and are congruent to 1 (mod f) for n large enough, where fZ = f ∩ Z (and for
n large enough, they will satisfy the property of the lemma since β does).

Definition 5.10. Let D and D′ be Shintani domains. The set T is special for the pair
(D,D′) if there are decompositions

D =
⋃

Ci, D′ =
⋃

C ′j (63)

that intersect transversely such that for each intersection Di,j,ε = εCi∩C ′j, the set T contains
two primes that are good for Di,j,ε or one prime η that is good for Di,j,ε such that Nη ≥ n+2.
The set T is special for D if there exists a Shintani domain D′ such that T is special for the
pair (D,D′).

Note that it is clear from the definitions that if T is special for the pair (D,D′), then it
is good for the pair (D,D′), and in particular it is good for D and D′ individually.

Lemma 5.9 gives a plentiful supply of β such that D =
⋃

C and βD =
⋃

βC intersect
transversely. For any such β, all but finitely many primes η with Nη prime will be special
for D (i.e. any set T containing η will be special for D) using the choice D′ = βD. However,
it is not clear whether η being good for D implies that it is special for D; it seems plausible
that this is the case if Nη is large enough.

Lemma 5.11. If two Shintani cones C and C ′ intersect transversely, then the intersection
C ∩ C ′ can be written as a finite disjoint union of cones

C ∩ C ′ =
⊔

Cα

such that the generators of the Cα are precisely the nonempty intersections of r-dimensional
faces B ≺ C with s-dimensional faces B′ ≺ C ′, with r + s = n + 1 (or more precisely, the
unique elements of O not divisible by any integer in those intersections). Furthermore, any
expression of C ∩ C ′ as a disjoint union of cones Cα contains this set of vectors among the
generators of the Cα.
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Proof. Let us intersect C and C ′ with the plane Y = {x ∈ RI :
∑

xi = 1}. Note that the
n− 1 dimensional space Y intersects every Shintani cone transversely. The sets CY = C ∩Y
and C ′Y = C ′ ∩ Y are interiors of simplices in Y . The faces of these simplices are exactly
the intersections BY = B ∩ Y and B′Y = B′ ∩ Y of the faces of C and C ′, respectively,
with the resulting dimensions reduced by 1. The intersection CY ∩ C ′Y is the interior of
a convex polyhedron GY in Y . We must show that the vertices of GY are precisely the
nonempty intersections of r-dimensional faces BY of CY with s-dimensional faces B′Y of C ′Y ,
with r + s = n − 1. Then the result about the existence of the partition C ∩ C ′ =

⊔
Cα

follows from the standard procedure of triangulation of polyhedra.
The vertices of GY lie in the closure of CY and of C ′Y , and are specified by the property

that they are not contained in the interior of any line segment in both closures. Thus each
vertex v lies in some face BY of CY and some face B′Y of C ′Y . If the dimensions of these faces
are r and s, respectively, then by transversality we must have r + s ≥ n− 1. Furthermore,
if r + s > n − 1 then Sp(BY ) ∩ Sp(B′Y ) would have dimension ≥ 1, yielding a line segment

in CY ∩ C
′
Y containing v. Thus r + s = n − 1 as desired. This proves that every vertex of

GY is of the desired form.
Conversely, if faces BY of dimension r and B′Y of dimension s intersect with r+s = n−1,

their intersection point v cannot lie in the interior of any line segment in CY ∩ C
′
Y . Indeed,

by convexity any such line segment would necessarily be contained in a face B′′Y of CY and
a face B′′′Y of CY ; but if v is on this line segment we must have BY = B′′Y and B′Y = B′′′Y
because the faces are disjoint. By transversality BY and B′Y intersect only in v, and hence
cannot contain a line segment. Thus every such v is indeed a vertex of GY .

Finally, if we had an expression of GY as a union of simplices which did not include v
as a vertex, then v would have to be contained in the interior of one these simplices and we
would again reach the same contradiction. This proves the final statement of the lemma.

Proposition 5.12. Let D and D′ be Shintani domains with T special for (D,D′). There
exists a positive integer m such that if β ∈ F ∩Q is such that β ≡ 1 (mod m) and λ(β) ∈ Z
is sufficiently close to 0, then T is good for (βD,D′).

Proof. Suppose that D =
⋃

Ci and D′ =
⋃

C ′j are decompositions as in (63). Let B ≺ Ci and
B′ ≺ C ′j be any two faces. By taking λ(β) sufficiently close to 0, we can ensure that βB∩εB′

is nonempty only if B ∩ εB′ is nonempty. Furthermore, by taking λ(β) sufficiently close to
0, we can ensure that in this case Sp(βB) and Sp(εB′) intersect transversely, since this is
the case for λ(β) = 0 by assumption. By Lemma 5.11 and the proof of Proposition 3.15, a
generator in a simultaneous decomposition of the pair (βD,D′) arises when an r-dimensional
face βB of a βCi intersects an s-dimensional face εB′ of an εC ′j, with r + s = n + 1; the
ray of intersection (or more precisely the unique element of O on that ray indivisible by an
integer) between these faces will be the generator. By our choice of β, the faces B and εB′

intersect in a line with a unique totally positive generator g ∈ O not divisible by an integer.
We claim that it suffices to prove that m can be chosen such that for every η ∈ T such that
g 6∈ η, we have v 6∈ η. Indeed, we know that T contains two primes that are good for Ci∩εC ′j
or one prime η that is good with Nη ≥ n + 2. By Lemma 5.11 we know that any expression
of this intersection as a finite disjoint union of cones will contain g as a generator. Thus T
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contains two primes η or one prime η with Nη ≥ n + 2 such that g 6∈ η for all g (with i, j, ε
fixed). Thus if we know that v 6∈ η as well, it will follow that T is good for βCi ∩ εC ′j.

Let us now suppose that g 6∈ η for η ∈ T with Nη = `. Define V` and W` to be
the Z`-submodules of O` generated by V ∩ O and W ∩ O, respectively, where O` is the
`-adic completion of O. The ring O` is a free Z`-module of rank n, and V` and W` are free
submodules of ranks r and s. Now V` ∩ W` = Z` · g. Let t be large enough such that the
Z`-module generated by V` and W` contains `t−1O`. Denote by Ṽ` and W̃` the reductions of
V` and W` mod `t. Then the mod ` reduction of Ṽ` ∩ W̃` equals (Z/`) · g.

Now βV` ∩W` = Z` · v. By reducing mod `t, the condition β ≡ 1 (mod `t) implies that

βṼ` ∩ W̃` = Ṽ` ∩ W̃`

in O`/`
t. Since v does not reduce to 0 mod `, we have that v reduces mod ` to cβ ·g for some

cβ ∈ (Z/`)×. Now the reduction mod η map is a functional O/`O → Z/`Z, so it vanishes
on v if and only if it vanishes on g; thus g 6∈ η implies v 6∈ η. Letting m be the product of `t

over all η and g completes the proof.

Corollary 5.13. Suppose that T is special for D. There exists a positive integer m and a
δ > 0 such that if β ∈ F ∩Q is such that β ≡ 1 (mod fm) and λ(β) < δ, then

uT (b,D) = uT (b(β),D).

Proof. Suppose that T is special for the pair (D,D′). If β is as in Proposition 5.12, then T
is good for (βD,D′). Theorem 5.3 implies

uT (b,D) = uT (b,D′) = uT (b, βD).

Proposition 5.1 allows us to rewrite this equation as

uT (b,D) = uT (b(β),D)

as desired.

Lemma 5.14. Given an integer m and a δ > 0, there exists a pair (β1, β2) of totally positive
elements of O with:

• Nβi is prime and βi ≡ 1 (mod fm) for i = 1, 2;

• Nβ1 6= Nβ2;

• |λ(β1)− λ(β2)| < δ.

Proof. Let Hfm be the narrow ray class field of F of conductor fm. There exist infinitely
many primes q of Q which split completely in Hfm. Any prime of F lying above such a
prime q can be written (β), where β is totally positive, β ≡ 1 (mod fm), and Nβ = q is
prime. Now β can be multiplied by any element of E(fm), and these properties will still be
satisfied. Thus we can choose β to lie in a Shintani domain Dfm for the action of E(fm)
on the totally positive quadrant Q. Since λ(Dfm) is a bounded subset of Z, there exists a
sequence of distinct such β such that λ(β) converges to some element of Z, by compactness.
Taking β1 and β2 close enough in this sequence gives the desired result.
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Let W0 denote the finite group of roots of unity in F×p , and define

W := {w ∈ W0 : (w, 1) ∈ E(f)},

where E(f) is the closure of E(f) in O×p × U as in Section 3.1.

Theorem 5.15. Let T be special and π-good for a Shintani domain D. Then the image of
uT (b,D) in F×p /W does not depend on D, and depends only on the class of b in Gf/〈p〉.

Proof. Let D and D′ be distinct Shintani domains, such that T is special for both domains.
Let β1 and β2 be as in Lemma 5.14, with m and δ chosen to satisfy Corollary 5.13 for both D
and D′. Since β = β1/β2 satisfies the conditions of Corollary 5.13, the corollary for b(β1)

−1

yields

uT (b(β1)
−1,D) = uT (b(β2)

−1,D) and uT (b(β1)
−1,D′) = uT (b(β2)

−1,D′). (64)

Let us also suppose that (β1) and (β2) are both good for (D,D′); all but finitely many
primes with prime norm are good for this pair, so Lemma 5.14 provides the existence of such
βi. Then Theorem 5.3 implies that

uT∪{βi}(b,D) = uT∪{βi}(b,D′)

for i = 1, 2. From Lemma 5.4 we obtain

uT (b,D)

uT (b(βi)−1,D)Nβi
=

uT (b,D′)
uT (b(βi)−1,D′)Nβi

. (65)

Raise equation (65) for β1 to the Nβ2 power, and for β2 to the Nβ1 power. Dividing the
resulting equations and combining with (64) yields

uT (b,D)Nβ2−Nβ1 = uT (b,D′)Nβ2−Nβ1 .

Thus uT (b,D) and uT (b,D′) differ (multiplicatively) by an element of W0. In Theorem 3.22
we showed that (uT (b,D), 1) ∈ F×p × U always reduces mod E(f) to the same element,
namely, the one predicted by Gross’s conjecture. Thus the ratio of uT (b,D) and uT (b,D′)
lies in the subgroup W ⊂ W0.

Now that we have demonstrated the independence of domain (mod W ), the independence
of choice of ideal b within its class in Gf/〈p〉 follows from Propositions 5.1 and 5.2.

Remark 5.16. The statement of parts (2) and (3) of Conjecture 3.21 rely on part (1).
However, these more essential claims may be salvaged if part (1) is false by replacing part
(2) with:

(2’) Let T be π-good and special for D. The class of uT (b,D) in F×p /W contains
a representative uT (σb) ∈ F×p satisfying (2).

Such a representative uT (σb) is necessarily unique, so part (3) may then be left unchanged.
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5.4 Relationship with Gross’s conjecture

In Section 3.4, we proved that our main Conjecture 3.21 implies Gross’s conjecture 2.6. In
this section, we prove a partial converse to this result. For the remainder of this section, we
assume that the image of uT (b,D) in F×p /W depends only on the class of b in Gf/〈p〉. For
example, this is the case when T is special for D. Assume that p 6= 2. Also assume that
H is linearly disjoint from F (ζpm) over F , for all m; if p is unramified over Q, then this is
automatic since p splits completely in H. Finally, we impose the condition that S contains
a finite prime q which is unramified in H and whose associated Frobenius σq is a complex
conjugation in H.

Lemma 5.17. Let m ≥ 0. There exists a finite set of prime ideals {r1, . . . , rs} in the narrow
ray class of q modulo f such that the reduction of D(f, r1r2 · · · rs) modulo pm is contained in
the image of the group W0 of roots of unity in F×p .

Proof. To ensure that D(f, r1r2 · · · rs) ⊂ W0 (mod pm), it suffices to choose the ri such that
if ε ∈ E = E(1) with ε ≡ 1 (mod ri) for all i, then εNp−1 ≡ 1 (mod pm). Let ε1, . . . , εn−1 be
a basis for E. Let a = (a1, . . . , an−1) be a tuple of integers. We will choose the ri such that
if

εa :=
n−1∏
j=1

ε
aj

j

is congruent to 1 modulo ri for all i, then Npm divides aj for all j. This will give the result.
Choose a representative a ∈ Zn−1 for each non-zero class in (Z/ NpmZ)n−1. Let pt be the

highest power of p dividing all of the ai, so pt < Npm. Let

L = F (ζp, (ε
a)1/pt+1

).

Let r be an ideal of F such that:

• Frob(H/F, r) = Frob(H/F, q);

• Frob(F (ζNpm)/F, r) = 1;

• Frob(L/F, r) acts nontrivially on (εa)1/pt+1
.

These conditions are not mutually exclusive, since we have assumed that H ∩F (ζNpm) = F ,
and since (εa)1/pt+1

is not contained in any abelian extension of F . Thus such an r exists
by Cebotarev. The second condition on r implies that Nr ≡ 1 (mod Npm). Choosing a
generator for the cyclic group (O/r)× gives a projection

prr : (O/r)× ∼= Z/(Nr− 1)Z −→ Z/ NpmZ.

The last condition on r implies that εa/pt
is not a p-th power in (O/r)×, and hence that

prr(ε
a) 6≡ 0 (mod Npm). For any other a′ ∈ Zn−1 equivalent to a in (Z/ NpmZ)n−1 the same

will be true, and hence εa′ 6≡ 1 (mod r). Thus letting the ri consist of such an ideal r for
each representative a, we will have the desired result.
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Theorem 5.18. Given the assumptions stated at the start of section 5.4, we have that
Conjecture 2.6 implies Conjecture 3.21 up to a root of unity. More precisely, if Conjecture 2.6
is true then uS,T (b,D) equals the Gross–Stark unit uσb

S,T in F×p /W .

Proof. Fix a positive integer m. Let {r1, . . . , rs} be a finite set of prime ideals as in
Lemma 5.17, and let r be one of the ri. It follows from

ζR∪{r}(H/F, σ, s) = ζR(H/F, σ, s)− Nr−sζR(H/F, σσ−1
r , s)

that the Gross–Stark units attached to S and S ∪ {r} are related by

uS∪{r},T =
uS,T

uσ−1
r

S,T

= u2
S,T ,

where this last equation follows from the fact that any complex conjugation acts as inversion
on Up. Thus if we let S ′ := S ∪ {r1, · · · , rs}, then we inductively obtain:

uS′,T = u2s

S,T . (66)

Similarly, if we write S ′′ = S − {q}, then from the equation

ζR∪{r}(b,D, U, s) = ζR(b,D, U, s)− Nr−sζR(br−1,D, U, s)

one calculates that

uS∪{r},T (b,D) =
uS,T (b,D)

uS,T (br−1,D)

=
uS′′,T (b,D)

uS′′,T (bq−1,D)
/

uS′′,T (br−1,D)

uS′′,T (br−1q−1,D)

≡ uS,T (b,D)2 (mod W0),

where the last equation follows from the assumption that uS′′,T (b,D) mod W0 depends only
on the class of b in Gf/〈p〉. We thus inductively obtain

uS′,T (b,D) ≡ uS,T (b,D)2s

(mod W0). (67)

We showed in Theorem 3.22 that uS′,T (b,D) satisfies Gross’s formula, and in Proposition 3.4
that Gross’s formula specifies uσb

S′,T uniquely modulo D(f, r1 · · · rs). By the choice of the ri,
it follows that uS′,T (b,D) ≡ w · uσb

S′,T (mod pm) for some w ∈ W0. Using equations (66) and
(67), and noting that m was arbitrary, we obtain uS,T (b,D) = w · uσb

S,T for some possibly

different w ∈ W0. Since uS,T (b,D) always agrees with Gross’s formula modulo E(f), we must
have w ∈ W . This proves the result.

6 Integrality of the measure

The goal of this section is to prove Proposition 3.12, which we restate below.

Proposition 6.1. Let η ∈ T be good for a simplicial cone C of dimension r. Let b be
a fractional ideal of F relatively prime to S and char T . For any compact open set U ⊂
Op, the function ζR,T (b, C, U, s) extends to a meromorphic function on C. Furthermore,
ζR,T (b, C, U, 0) ∈ Z[1/`], and the denominator of ζR,T (b, C, U, 0) is at most `r/(`−1).
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6.1 Proof of integrality

We will compute ζR,T (b, C, U, s) following the method of Shintani [19, §1.4]. Let A be an
r × n matrix of positive real numbers. Denote by Lj, for j = 1, . . . , r, the linear form in n
variables given by

Lj(t1, . . . , tn) =
n∑

i=1

ajiti,

and by L∗j , for j = 1, . . . , n, the linear form in r variables given by

L∗j(t1, . . . , tr) =
r∑

i=1

aijti.

Let x = (x1, . . . , xr) be an r-tuple of positive real numbers, and let χ = (χ1, . . . , χr) be an
r-tuple of complex numbers of absolute value at most 1. Define the function

ζ(A, x, χ, s) :=
∞∑

z1,...,zr=0

r∏
i=1

χzi
i

n∏
j=1

L∗j(z + x)−s. (68)

Proposition 6.2. [19, Proposition 1, §1.1] The Dirichlet series ζ(A, x, χ, s) is absolutely
convergent for Re(s) > r/n and has an analytic continuation to a meromorphic function in
the whole complex plane. Furthermore, if χi 6= 1 for i = 1, . . . , r, we have

ζ(A, x, χ, 0) =
r∏

i=1

1

1− χi

.

Proof of Proposition 6.1. From equation (59), we can use induction on the size of T to reduce
to the case T = {η}. Note that since we always assume that T contains no two primes of the
same residue characteristic, the property that b is relatively prime to char T is maintained
during the induction.

Recall the definition
ζR(b, C, U, s) = Nb−s

∑
α∈V ∩C

Nα−s,

where
V := {α ∈ b−1 ∩ U : α ≡ 1 (mod f), (α, R) = 1}.

The set V can be written as a finite disjoint union

V =
d⋃

i=1

(a + yi),

with a a fractional ideal supported only at the primes of S and those supporting bf, and
some yi ∈ F . More precisely, we can take

a = b−1fpe
∏
m∈R

m,
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where e is large enough so that U can be written as a finite disjoint union of translates of
peOp. In particular, the assumptions that S and b are prime to ` = Nη imply that a is
relatively prime to all primes dividing `. Without loss of generality, we may also choose
yi ∈ η. Then to prove the proposition, it suffices to show that if

Z(a, y, C, s) :=
∑

α∈(a+y)∩C

Nα−s, (69)

then Z(a, y, C, s) extends to a meromorphic function on C, and that

Z(a, y, C, 0)− ` · Z(aη, y, C, 0) ∈ Z[1/`]

with denominator at most `r/(`−1).
Write C = C(v1, . . . , vr), with vi ∈ O, vi 6∈ η. By multiplying by an appropriate integer,

we can assume that vi ∈ a, for i = 1, . . . , r. Using the crucial fact that a is prime to `, the
property vi 6∈ aη may be maintained after this integer multiplication. Any element α ∈ C
may be written uniquely as

α =
r∑

i=1

(xi + zi)vi

for positive real numbers xi ≤ 1 and non-negative integers zi. Since vi ∈ a, the element α
will lie in a + y if and only if

∑
xivi does. Thus if we let

Ω(a, y, v) =
{

x ∈ a + y : x =
∑

xivi with 0 < xi ≤ 1
}

,

then

Z(a, y, C, s) =
∑

x∈Ω(a,y,v)

∞∑
z1,...,zr=0

N
(∑

(xi + zi)vi

)−s

=
∑

x∈Ω(a,y,v)

ζ(Av, x, {1}r
i=1, s), (70)

where Av is the r × n matrix whose jth row contains ι(vj) for ι ∈ I. Note that Ω(a, y, v) is
finite, since the image of a+ y is discrete in RI , and {

∑
xivi : 0 ≤ xi ≤ 1} is compact. Thus

Proposition 6.2 implies that Z(a, y, C, s) has a meromorphic continuation to C.
Now let χ : a/aη ∼= Z/`Z → C× be a non-trivial character. For x ∈ a we have the

standard orthogonality relation

`−1∑
t=0

χ(x)t =

{
` if x ∈ aη

0 otherwise.

Thus

` · Z(aη, y, C, s) =
∑

x∈Ω(a,y,v)

`−1∑
t=0

∞∑
z1,...,zr=0

N
(∑

(xi + zi)vi

)−s

χ
(
y −

∑
(xi + zi)vi

)t

=
∑

x∈Ω(a,y,v)

`−1∑
t=0

χ(y − x)tζ(Av, x, {χ(vi)
t}, s). (71)
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Noting that (70) equals the term of (71) with t = 0, we find

Z(a, y, C, s)− ` · Z(aη, y, C, s) = −
∑

x∈Ω(a,y,v)

`−1∑
t=1

χ(y − x)tζ(Av, x, {χ(vi)
t}, s). (72)

Since vi 6∈ aη and t ranges from 1 to `−1, the values χ(vi)
t are non-trivial `th roots of unity.

Thus Proposition 6.2 gives the value of (72) at s = 0:

Z(a, y, C, 0)− ` · Z(aη, y, C, 0) = −
∑

x∈Ω(a,y,v)

TrQ(µ`)/Q

(
χ(y − x)∏r

i=1(1− χ(vi))

)
.

The algebraic integer 1−χ(vi) lies above ` and has valuation `1/(`−1). This gives the desired
result.

6.2 An alternate formula

We now provide an alternate formula for Z(a, y, C, s) which will be useful in Section 8 for
relating the element uT to the constructions of [7]. We begin with the following calculation
of Shintani.

Proposition 6.3. [19, Proposition 1 and Corollary, §1.1] With the notation as in (68), we
have

(−1)r · ζ(A, x, {1}, 0) =
r∏

i=1

B1(xi) +
1

n

∑
q

∏
qj>0

Bqj
(xj)

qj!

∑
k

ck(q, A). (73)

Here Bi(x) is the standard Bernoulli polynomial. The sum in (73) is taken over all tuples
(q1, . . . , qr) of non-negative integers with

∑
qi = r and at least one qi equal to 0. The value

ck(q, A) is the constant coefficient in the Taylor expansion of

r∏
j=1

Lj(t1, t2, . . . , tk−1, 1, tk+1, . . . , tn)

at the origin.

The precise form of the second summand in (73) will not be relevant for us. We will only
use the fact that

ζ(A, x, {1}, 0) = δ(x) +
∑

q

d(q, x, A) (74)

where

δ(x) = (−1)r ·
r∏

i=1

B1(xi) = (−1)r ·
r∏

i=1

(
xi −

1

2

)
and d(q, x, A) does not depend on the value of the xi with qi = 0.
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As in the proof of Proposition 6.2, write C = C(v1, . . . , vr) with vi ∈ a, vi 6∈ aη. Define
wi = ` · vi, so that wi ∈ aη. Then equation (70) with {vi} replaced by {wi} may be used to
calculate both Z(a, y, C, s) and Z(aη, y, C, s); combining the resulting equations with (74)
yields

Z(a, y, C, 0)− `Z(aη, y, C, 0) =

 ∑
x∈Ω(a,y,w)

δ(x)−
∑

x′∈Ω(aη,y,w)

` · δ(x′)

 (75)

+
∑

q

 ∑
x∈Ω(a,y,w)

d(q, x, Aw)−
∑

x′∈Ω(aη,y,w)

` · d(q, x′, Aw)

. (76)

We claim that each term in braces in (76) vanishes. Indeed, for each fixed q, choose any
index j with qj = 0. For every x ∈ Ω(a, y, w), there is a unique x′ ∈ Ω(aη, y, w) such that
x′i = xi for i 6= j, and x′j ≡ xj (mod 1

`
Z). This follows from the fact that vj = wj/` ∈ a,

vj 6∈ aη, and a/aη ∼= Z/`Z. The map x 7→ x′ defines an `-to-1 map from Ω(a, y, w) to
Ω(aη, y, w) such that d(q, x, Aw) = d(q, x′, Aw). This implies the claim that the terms in (76)
vanish. Thus we arrive at the formula

Z(a, y, C, 0)− `Z(aη, y, C, 0) =
∑

x∈Ω(a,y,w)

δ(x)−
∑

x′∈Ω(aη,y,w)

` · δ(x′). (77)

7 Norm compatibility

Let H ⊂ H ′ be two finite abelian extensions of F in which p splits completely. Choose a prime
P′ above p in H ′, and let P be the prime of H below P′. The uniqueness of the conjectural
unit uT (P) ∈ H× satisfying Stark’s Conjecture 2.5 implies the “norm compatibility relation”

uT (P) = NormH′/H uT (P′). (78)

As remarked earlier, this justifies our restriction to the case where H ′ is the largest subfield
of a narrow ray class field Hf in which p splits completely; the Gross–Stark unit for any
subfield H ⊂ H ′ may be found from the Gross–Stark unit for H ′, using equation (78).

Furthermore, the norm compatibility relation provides a consistency test for Conjec-
ture 3.21. Let Hf ⊂ Hff′ be two narrow ray class field extensions of F , and let H and
H ′ respectively be the largest subfields in which p splits completely. The reciprocity map
identifies Gal(H ′/H) with

{β ∈ (O/ff′)×: β ≡ 1 (mod f)}/Ep(f). (79)

Let b be a fractional ideal of F relatively prime to S and char T , and let Df be a Shintani
domain for E(f). If {γ} is a set of coset representatives for E(ff′) in E(f), then

Dff′ :=
⋃
γ

γDf
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is a Shintani domain for E(ff′). Conjecture 3.21 predicts that uT (b,Df) is the Gross–Stark
unit for H and the prime Pσb above p, and that uT (b,Dff′) is the Gross–Stark unit for H ′

and the prime (P′)σb . Furthermore, if G denotes a set of totally positive elements of O
that are relatively prime to S and char T and whose images in (O/ff′)× are a set of distinct
representatives for (79), then the “Shimura Reciprocity Law” in Conjecture 3.21 implies that
the conjugates of uT (b,Dff′) over H are the elements uT (b(β), β−1Dff′), for β ∈ G. The norm
compatibility relation then demands:

Theorem 7.1. We have

uT (b,Df) =
∏
β∈G

uT (b(β), β−1Dff′). (80)

We skip the computational proof of Theorem 7.1; a similar but less complicated calcula-
tion is described in detail in Section 8. The choice of Shintani domain β−1Dff′ in the right
side of (80) is used to formulate an unconditional statement; the more natural choice Dff′

can be used if we assume part (1) of Conjecture 3.21 (or if we restrict to special domains
and only demand equality up to roots of unity).

8 Real quadratic fields

Let F be a real quadratic field of discriminant D. Let τ ∈ F−Q, and suppose that τ satisfies
the polynomial

Aτ 2 + Bτ + C = 0

for integers A, B, and C, with gcd(A, B, C) = 1 and A > 0. Write B2 − 4AC = Df 2 for an
integer f > 0. Let ` be a prime divisor of A with ` ≥ 5, and suppose that D, f, and ` are
pairwise coprime. Define the formal linear combination of divisors of the prime `:

α := `[1]− [`]. (81)

Let p be a rational prime of Q which is inert in F and write p = (p) ⊂ F . Suppose that A and
f are each not divisible by p. Denote by Hrng

f the narrow ring class field of F of conductor
f (see [5, §9] for a definition). Let Up be as in (3) with H = Hrng

f . The article [7] defines
an element u(α, τ) ∈ F×p and conjectures that this element lies in Up ([7, Conjecture 2.14]).
Furthermore, this conjecture is shown to imply Conjecture 2.4 for the extension Hrng

f /F and
the sets S = {∞1,∞2, divisors of f, p} and T = {η}, where η is a prime of F lying above `,
defined below.

Remark 8.1. In [7], the prime ` was replaced by a composite number N , and the element
α of (81) was replaced by a formal linear combination of divisors of N :

α =
∑
d|N

nd[d].

However, it was assumed in [7] that
∑

ndd = 0 and
∑

nd = 0. One can check that this
second assumption is in fact irrelevant to the construction, and may be dropped; our choice
of α in (81) does not satisfy this condition.
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We now review the construction of u(α, τ) given in [7] and refined in [8]. In the former
article, it is shown that the definition of u(α, τ) depends only on τ modulo the left action
of Γ0(`) via linear fractional transformations; by translating τ by an appropriate matrix,
we may assume that A/` is relatively prime to ` and to f . Let Of := Z + fO denote the
order of conductor f in F . Letting 〈α, β〉 denote the Z-lattice generated by α and β, note
that Of = 〈1, Aτ〉. Furthermore, 〈1, `τ〉 is an invertible (i.e. proper) fractional ideal of Of

relatively prime to f and `; we denote its inverse by bf ⊂ Of . Let b = bfO be the ideal of
O generated by bf . Note that b ∩ Of = bf .

Similarly, 〈1, τ〉 is an invertible fractional ideal of Of , and the quotient

ηf := 〈`, `τ〉 · 〈1, `τ〉−1

is an integral ideal of Of of norm `. We denote by η the prime ideal of norm ` in O generated
by ηf .

Fix the real embedding of F in which τ is greater than its conjugate. Let ε be the
fundamental totally positive unit of O×f with 0 < ε < 1. Write ε = cτ − a for integers a and
c, with A|c. Note that ` - a. Let X = (Zp × Zp)

′ denote the set of “primitive vectors” in
Zp ×Zp, i.e. those vectors not divisible by p. Define a Z-valued measure ξ on X by the rule

ξ(Uu,v,s) = 2
∑

h (mod c)

B̃1

(
a

c

(
h +

v

ps

)
− u

ps

)[
B̃1

(
`

c

(
h +

v

ps

))
− `B̃1

(
1

c

(
h +

v

ps

))]
(82)

on the basis of compact open sets given by

Uu,v,s = (u + psZp)× (v + psZp),

where u, v, s are integers with u or v not divisible by p, and s ≥ 0. In equation (82), the
“periodic Bernoulli polynomial” B̃1 is defined by

B̃1(x) :=

{
0 if x ∈ Z

x− bxc − 1
2

otherwise.

We then have the definition

u(α, τ) = p2·ζR,T (Hrng
f /F,b,0) ×

∫
X

(x− yτ)dξ(x, y) ∈ F×p . (83)

Remark 8.2. In [7], the exponent of p in the definition of u(α, τ) is given to be a certain
explicit Dedekind sum, namely that which is obtained by setting u = v = 0 in the right
side of (82). It is proven in [7, Theorem 3.1] that this sum is equal to 2 · ζS,T (Hrng

f /H, b, 0).
Also, the constant 2 in the definition of ξ is replaced by 12 in [7] to ensure the integrality
of the measure in the cases ` = 2, 3. Indeed, the assumption ` ≥ 5 can be eliminated in
the discussion to follow if we multiply the measures ξ and ν by 4 or 3, respectively, when
` = 2, 3. For ease of notation, we will simply retain the assumption ` ≥ 5.
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The goal of this section is to provide a concrete formula relating u(α, τ) to the construc-
tions of the current article. Following the notations set out earlier, let Hf denote the narrow
ray class field of conductor f , and let H denote the largest subextension of Hf/F in which
the prime p splits completely. We then have Hrng

f ⊂ H ⊂ Hf . Note that the image of ε in
(O/fO)× lies in (Z/fZ)×. Class field theory provides a canonical isomorphism

rec : (Z/fZ)×/〈p, ε〉 ∼= Gal(H/Hrng
f ). (84)

Let D be any Shintani domain for the action of E(f) on Q for which T is good (note
that ` > n + 2 = 4). Since n = 2, part (1) of Conjecture 3.21 holds unconditionally (see
the comments following Theorem 5.3). Thus uT (b,D) does not depend on D, and in fact
only depends on σb ∈ Gal(H/F ). Conjecture 3.21 predicts that uT (b,D) is the Gross–Stark
unit for (S, T, H/F ). Furthermore, if we let G be a set of positive integers relatively prime
to `, f , and p, whose images in (Z/fZ)× form a set of distinct coset representatives of the
subgroup 〈p, ε〉, then Conjecture 3.21 implies that the norm of uT (b,D) from H to Hrng

f is∏
a∈G

uT (b(a),D).

The norm compatibility of Gross–Stark units implies that this element should be the Gross-
Stark unit for (S, T, Hrng

f /F ). The compatibility of the conjectures in [7] with those in this
article therefore requires:

Theorem 8.3. With the notation as above, we have

u(α, τ) =
∏
a∈G

uT (b(a),D)2. (85)

8.1 The case f = 1

We first prove Theorem 8.3 in the case f = 1. Then

Hrng
f = H = Hf = narrow Hilbert class field of F.

Consider the Shintani domain D = C(1, ε) ∪ C(1). Since π = p ∈ Q, the ε-factor in the
definition (25) of uT (b,D) is trivial. Furthermore, the powers of p in the definitions of u(α, τ)
and uT (b,D)2 are equal. Thus it suffices to prove that

×
∫

X

(x− yτ)dξ(x, y) = ×
∫
O×p

z2 dν(b,D, z).

The map (x, y) 7→ z = (−`)(x− yτ) identifies X with O×p . Let

V = V`(vτ−u),s := {x ∈ O×p : x ≡ `(vτ − u) (mod ps)}.

We will show that

ξ(Uu,v,s) = 2ν(b, C(1, ε), V )− ν(b, C(1), V )− ν(b, C(ε), V ). (86)
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Now the measures ν(b, C(1)) and ν(b, C(ε)) are easy to calculate explicitly. For example, if
b−1 ∩Q is generated by the positive rational b, then ζR(b, C(1), x + pmOp, s) can be written
in terms of the Hurwitz zeta-function as

(Nb · b2p2)−s · ζ(2s, x′/pm)

where x′ is the unique integer such that x′ ≡ xb−1 (mod pm) and 0 < x′ < pm. (Note that
ζR(b, C(1), x + pmOp, s) is identically 0 if x is not congruent to an integer in O/pm.) Since
it is well known that

ζ

(
0,

x′

pm

)
=

1

2
− x′

pm
,

it follows that
ν(b, C(1),−U) = −ν(b, C(1), U).

The same is true with C(ε) replacing C(1), and we conclude that

×
∫
O×p

z dν(b, C(ε), z) = ×
∫
O×p

z dν(b, C(1), z) = ±1.

Thus (86) implies that

×
∫

X

(x− yτ)dξ(x, y) = ×
∫
O×p

(−z/`)2 dν(b,D, z)

= ×
∫
O×p

z2 dν(b,D, z),

since ν(b,D,O×p ) = 0. It remains to prove (86).
In the notation of (69),

ν(b,D, V ) = Z(b−1ps, `(vτ − u),D, 0)− `Z(b−1psη, `(vτ − u),D, 0).

Let C = C(1, ε), and let (w1, w2) = (`ps, `psε) as in section 6.2; note that wi/` ∈ b−1ps and
wi/` 6∈ b−1psη, as required. From (77), we obtain

ν(b, C, V ) =
∑

x∈Ω(b−1ps,`(vτ−u),w)

B1(x1)B1(x2) −
∑

x′∈Ω(b−1psη,`(vτ−u),w)

`B1(x
′
1)B1(x

′
2). (87)

The fractional ideal b−1ps is the set of elements of the form

h · ps`τ + j · ps

for h, j ∈ Z. Solving the equation

hps`τ + jps + `(vτ − u) = x1(`p
s) + x2(`p

sε)
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yields

x1 =
a

c

(
h +

v

ps

)
− u

ps
+

j

`

x2 =
1

c

(
h +

v

ps

)
.

For each equivalence class modulo c, there exists a unique integer h in that class such that
0 < x2 ≤ 1. For this fixed h, and each possible equivalence class modulo `, there exists a
unique integer j in that class such that 0 < x1 ≤ 1. Thus the first sum in (87) equals∑

h (mod c)

B̃1

(
1

c

(
h +

v

ps

)) ∑
j (mod `)

B̃1

(
a

c

(
h +

v

ps

)
− u

ps
+

j

`

)
+ Err1, (88)

where Err1 is an explicit error term arising from the discrepancy between B̃1(1) = 0 and
B1(1) = 1/2. The sum in (88) may be shown to equal∑

h (mod c)

B̃1

(
1

c/`

(
h +

v

ps

))
B̃1

(
a

c

(
h +

v

ps

)
− u

ps

)
(89)

using the distribution relation ∑
j (mod `)

B̃1

(
x +

j

`

)
= B̃1(`x).

A similar argument evaluates the second sum in (87):∑
x′∈Ω(b−1psη,`(vτ−u),w)

`B̃1(x
′
1)B̃1(x

′
2) = `

∑
h (mod c)

B̃1

(
1

c

(
h +

v

ps

))
B̃1

(
a

c

(
h +

v

ps

)
− u

ps

)
+ Err2.

(90)
Combining (82), (87), (89), and (90), we find

ξ(Uu,v,s) = 2ν(b, C(1, ε), V )− 2(Err1 + Err2).

One similarly calculates that ν(b, C(1), V )+ν(b, C(ε), V ) is equal to the sum 2(Err1 +Err2),
giving the desired equality (86).

8.2 General f

We now prove Theorem 8.3 for general f ≥ 1. Denote by e the order of p in Gf ; this is the
smallest power of p which is congruent to a power εg of ε in (O/fO)×. Let π = pe · ε−g ≡ 1
(mod f). Finally, let D be a Shintani domain for the action of E(f) on Q. Note that
E(f) = 〈εh〉, where h is the order of ε in (Z/fZ)×. Thus if Df is a Shintani domain for the
action of 〈ε〉 on Q, then we may take

D =
h−1⋃
i=0

εiDf .
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To reduce Theorem 8.3 to the calculation we have already done for f = 1, we will show
that the right side of (85) can be written as in the case f = 1, with the ideal b ⊂ O replaced
by bf ⊂ Of . To be precise, define a zeta-function attached to the ring Of by

ζf (bf ,Df , U, s) = Nb−s
f

∑
α∈b−1

f
∩Df

α∈U

Nα−s,

and define ζf
T from ζf as usual. Define νf by

νf (bf ,Df , U) := ζf
T (bf ,Df , U, 0). (91)

Recall that G is a set of positive integers relatively prime to p and ` which forms a set of
distinct representatives for the cosets of 〈p, ε〉 in (Z/fZ)×. Then we will prove that∏

a∈G

uT (b(a),D) = pζR,T (Hrng
f /F,b,0) ×

∫
O×p

x dνf (bf ,Df , x). (92)

The proof that the square of the right side of (92) is equal to u(α, τ) then proceeds as in
the case f = 1, simply by replacing b ⊂ O by bf ⊂ Of .

It thus remains to prove (92). To proceed, we will require some extra notation; for any
subset A of equivalence classes in (O/fO)×, let νA(b,D, U) = ζA

T (b,D, U, 0) where ζA is the
zeta-function:

ζA(b,D, U, s) = Nb−s
∑

α∈b−1∩D
α∈U,α∈A

Nα−s, (93)

and ζA
T is obtained from ζA as usual. This generalizes ζT (b,D, U, s) = ζ

{1}
T (b,D, U, s) and

ν(b,D, U) = ν{1}(b,D, U).
Since the definition of the ε-factor given in (24) is unchanged by multiplying the third

argument by a rational factor, we have

uT (b,D) =
pe·ζR,T (Hf /F,b,0)ε(b,D, ε−g)

εg·ζR,T (Hf /F,b,0)
×
∫

O

x dν(b,D, x) (94)

Note that

O =
e−1⋃
i=0

piO×p .

A direct calculation from the definitions shows that for U ⊂ O×p , we have

ν(b,D, piU) = ν{p−i}(b,D, U).

Thus the integral in (94) may be written:

p
Pe−1

i=0 i·ν(b,D,piO×p ) ×
∫
O×p

x dνA(b,D, x) = pζR,T (H/F,b,0)−e·ζR,T (Hf /F,b,0) ×
∫
O×p

x dνA(b,D, x),
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where A = {1, p−1, · · · , p−(e−1)}. It follows from the definition (93) that

νA(b, εiDf , U) = νε−iA(b,Df , ε
−iU),

from which we deduce

×
∫
O×p

x dνA(b,D, x) =
h−1∏
i=0

×
∫
O×p

x dνA(b, εiDf , x)

=
h−1∏
i=0

[
εi·νε−iA(b,Df ,O×p ) ×

∫
O×p

x dνε−iA(b,Df , x)

]
= ε

Ph−1
i=0 i·νε−iA(b,Df ,O×p ) ×

∫
O×p

x dν〈ε,p〉(b,Df , x),

where 〈ε, p〉 is the subgroup of (Z/fZ)× ⊂ (O/fO)× generated by ε and p. A simple
combinatorial argument shows that

h−1∑
i=0

i · νε−iA(b,Df ,O×p ) = g · ν〈ε〉(b,Df ,Op)− h · ν{1,ε−1,...,ε−(g−1)}(b,Df ,Op).

One also computes

ε(b,D, ε−g) = ε
h·ν{1,ε−1,...,ε−(g−1)}(b,Df ,Op)

and
ζR,T (Hf/F, b, 0) = ν〈ε〉(b,Df ,Op).

Combining these calculations, all of the terms involving ε cancel out, and we obtain

uT (b,D) = pζR,T (H/F,b,0) ×
∫
O×p

x dν〈ε,p〉(b,Df , x).

It follows that∏
a∈G

uT (b(a),D) =
∏
a∈G

[
pζR,T (H/F,b(a),0) ×

∫
O×p

x dν〈ε,p〉(b(a),Df , x)

]

= pζR,T (Hrng
f /F,b,0)

∏
a∈G

×
∫
O×p

x dνa〈ε,p〉(b,Df , ax)

= pζR,T (Hrng
f /F,b,0) ×

∫
O×p

x dν(Z/fZ)×(b,Df , x),

since νa〈ε,p〉(b,Df ,O×p ) = 0 for each a ∈ G. It follows directly from the definitions that

ν(Z/fZ)×(b,Df ) = νf (bf ,Df ),

where the right side is defined in (91). This completes the proof of (92), and hence of
Theorem 8.3.
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