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Abstract. We consider the classical Diophantine problem of writing positive
integers n as the sum of two rational cubes, i.e. n = x3 + y3 for x, y ∈ Q. A

conjecture attributed to Sylvester asserts that a rational prime p > 3 can be
so expressed if p ≡ 4, 7, 8 (mod 9). The theory of mock Heegner points gives

a method for exhibiting such a pair (x, y) in certain cases. In this article, we

give an expository treatment of this theory, focusing on two main examples:
a theorem of Satgé, which asserts that x3 + y3 = 2p has a solution if p ≡ 2

(mod 9), and a proof sketch that Sylvester’s conjecture is true if p ≡ 4, 7

(mod 9) and 3 is not a cube modulo p.

1. A Diophantine problem

1.1. Sums of rational cubes. We begin with the following simple Diophan-
tine question.

Question. Which positive integers n can be written as the sum of two cubes
of rational numbers?

For n ∈ Z>0, let En denote the (projective nonsingular) curve defined by the
equation x3 +y3 = nz3. This curve has the obvious rational point ∞ = (1 : −1 : 0),
and equipped with this point the curve En has the structure of an elliptic curve
over Q. The equation for En can be transformed via the change of variables

(1) X = 12n
z

x + y
, Y = 36n

x− y

x + y

to yield the affine Weierstrass equation Y 2 = X3 − 432n2.
We then have the equivalent question: Which curves En have a nontrivial

rational point? For n not a cube or twice a cube, En(Q)tors = {∞} (see [Si, Exercise
10.19]), so also equivalently, which curves En have positive rank rk(En(Q)) > 0?

Examples. Famously, 1729 = 13 + 123 = 93 + 103; also,(
15642626656646177
590736058375050

)3

+
(
−15616184186396177

590736058375050

)3

= 94.

In each case, these solutions yield generators for the group En(Q). (Note n = 94 =
2 · 47 is a case covered by Satgé’s theorem below, cf. §3.1.)
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1.2. Sylvester’s conjecture. We now consider the case n = p ≥ 5 is prime.

Conjecture (Sylvester, Selmer [Se]). If p ≡ 4, 7, 8 (mod 9), then p is the
sum of two rational cubes.

Although this conjecture is traditionally attributed to Sylvester (see [Sy2, §2]
where he considers “classes of numbers that cannot be resolved into the sum or
difference of two rational cubes”), we cannot find a specific reference in his work to
the above statement or one of its kind (see also [Sy1, Sy3, Sy4]).

An explicit 3-descent (as in [Se], see also [Sa1]) shows that

rk(Ep(Q)) ≤


0, if p ≡ 2, 5 (mod 9);
1, if p ≡ 4, 7, 8 (mod 9);
2, if p ≡ 1 (mod 9).

Hence rk(Ep(Q)) = 0 for p ≡ 2, 5 (mod 9), a statement which can be traced back
to Pépin, Lucas, and Sylvester [Sy2, Section 2, Title 1].

The sign of the functional equation for the L-series of Ep is

sign(L(Ep/Q, s)) =

{
−1, if p ≡ 4, 7, 8 (mod 9);
+1, otherwise.

(See [K]; this can be derived from the determination of the local root numbers
wp(Ep) = (−3/p) and w3(Ep) = 1 if and only if p ≡ ±1 (mod 9).)

Putting these together, for p ≡ 4, 7, 8 (mod 9), the Birch–Swinnerton-Dyer
(BSD) conjecture predicts that rk(Ep(Q)) = 1.

1.3. A few words on the case p ≡ 1 (mod 9). For p ≡ 1 (mod 9), the
BSD conjecture predicts that rk(Ep(Q)) = 0 or 2, depending on p. This case was
investigated by Rodriguez-Villegas and Zagier [R-VZ].

Define Sp ∈ R by

L(Ep/Q, 1) =
Γ( 1

3 )3
√

3
2π 3
√

p
Sp;

then in fact Sp ∈ Z, and conjecturally (BSD) we have Sp = 0 if #Ep(Q) = ∞
and Sp = #X(Ep) otherwise. Rodriguez-Villegas and Zagier give two formulas for
Sp, one of which proves that Sp is a square. They also give an efficient method to
determine whether Sp = 0.

1.4. The case p ≡ 4, 7, 8 (mod 9): an overview. Assume from now on that
p ≡ 4, 7, 8 (mod 9). We can easily verify Sylvester’s conjecture for small primes p.

7 = 23 + (−1)3

13 = (7/3)3 + (2/3)3

17 = (18/7)3 + (−1/7)3

31 = (137/42)3 + (−65/42)3

43 = (7/2)3 + (1/2)3

...

Again, the BSD conjecture predicts that we should always have that p is the sum
of two cubes. General philosophy predicts that in this situation where Ep has
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expected rank 1, one should be able to construct rational nontorsion points on Ep

using the theory of complex multiplication (CM).
In §2, we introduce the construction of Heegner points, which uses the canonical

modular parametrization Φ : X0(N) → Ep where N is the conductor of Ep; this
strategy requires a choice of imaginary quadratic extension K and is therefore not
entirely “natural”. If instead we try to involve the field K = Q(ω), we arrive at a
theory of mock Heegner points. We then choose a fixed modular parametrization
X0(N) → E where E is a designated twist of Ep for each prime p.

In §3, we illustrate one such example, originally due to Satgé. We look at the
parametrization X0(36) → E where E : y2 = x3 + 1 is a twist of the curve E2p.
We show that when p ≡ 2 (mod 9), the equation x3 + y3 = 2p has a solution; the
proof involves a careful analysis of the relevant Galois action using the Shimura
reciprocity law and explicit recognition of modular automorphisms.

In §4, we return to Sylvester’s conjecture, and we sketch a proof that the
conjecture is true if p ≡ 4, 7 (mod 9) and 3 is not a cube modulo p; here, we
employ the parametrization X0(243) → E9. We close with some open questions.

2. Heegner and Mock Heegner points

2.1. Heegner points. The curve Ep has conductor N = 9p2 if p ≡ 7 (mod 9)
and conductor N = 27p2 if p ≡ 4, 8 (mod 9). We have the modular parametrization

Φ : X0(N) → Ep,

from which we may define Heegner points as follows.
Let K = Q(

√
D) be a quadratic imaginary field of discriminant D such that 3

and p split in K; the pair (Ep,K) then satisfies the Heegner hypothesis. Let OK

denote the ring of integers of K, and let N ⊂ OK be a cyclic ideal of norm N .
Then the cyclic N -isogeny

C/OK → C/N−1

defines a CM point P ∈ X0(N)(H), where H is the Hilbert class field of K.
Let Y = TrH/K Φ(P ) ∈ Ep(K) denote the trace, known as a Heegner point.

After adding a torsion point if necessary, we may assume Y ∈ Ep(Q) (see [D, §3.4],
and note Ep(K)tors = Ep[3](K) ∼= Z/3Z.)

2.2. Gross-Zagier formula. The Gross-Zagier formula indicates when we
expect the point Y ∈ Ep(Q) to be nontorsion, i.e. when its canonical height ĥ(Y )
is nonzero.

Theorem (Gross-Zagier formula [D, Theorem 3.20]). We have

ĥ(Y ) .= L′(Ep/K, 1) = L′(Ep/Q, 1)L(Ep/Q, χK , 1).

Here the symbol .= denotes equality up to an explicit nonzero “fudge factor.”
Thus if we choose K such that L(Ep/Q, χK , 1) 6= 0, the BSD conjecture implies
that ĥ(Y ) 6= 0 and hence Y will be nontorsion. Working algebraically, without
making any reference to L-functions, one might hope to prove that Y is nontorsion
directly and unconditionally. But this strategy seems tricky—in particular, no
natural candidate for K presents itself. In the next section we discuss a more
“natural” approach to constructing a nontorsion point on Ep.



4 SAMIT DASGUPTA AND JOHN VOIGHT

2.3. Mock Heegner points. We consider now a variation of the above method
where we construct what are known as mock Heegner points; this terminology is due
to Monsky [M, p. 46], although Heegner’s original construction can be described
as an example of such “mock” Heegner points.

Consider the field K = Q(
√
−3) = Q(ω), where ω is a primitive cube root of

unity. Note that the elliptic curve En : x3 + y3 = nz3 has CM by OK , given by

[ω](x, y) = (ωx, ωy).

The prime 3 is ramified in K, so the Heegner hypothesis is not satisfied for
the pair (Ep,K). Nevertheless, Heegner-like constructions of points defined by CM
theory may still produce nontorsion points in certain situations.

2.4. Twisting. Notice that

(2) (r/ 3
√

p)3 + (s/ 3
√

p)3 = 1 ⇐⇒ r3 + s3 = p.

The obvious equivalence (2) suggests that to find points on Ep(K), we may identify
Ep as the cubic twist of E1 by 3

√
p. More precisely, let L = K( 3

√
p), and let σ be the

generator of Gal(L/K) satisfying σ( 3
√

p) = ω 3
√

p. The Galois group Gal(K/Q) is
generated by complex conjugation, which we denote by . We have an isomorphism
of groups

Ep(Q) ∼= {(r/ 3
√

p, s/ 3
√

p) ∈ E1(L) : r, s ∈ Q}
= {Y ∈ E1(L) : Y σ = ω2Y, Y = Y }.

In other words, we look for points on E1(L) with specified behavior under Gal(L/Q).
More generally (see [Si, §X.5]), if E/Q is an elliptic curve, then one defines the

set of twists of E to be the set of elliptic curves over Q that become isomorphic to
E over Q, modulo isomorphism over Q. There is a natural bijection between the
set of twists of E and the Galois cohomology group

H1(Q,Aut(E)) := H1(Gal(Q/Q),Aut(EQ)).

In our setting,

Ep(Q) ∼= {Y ∈ E1(L) : Y σ = ω2Y, Y = Y }
= {Y ∈ E1(L) : Y τ = cτY for all τ ∈ Gal(L/Q)}(3)

where [cτ ] ∈ H1(Q,Aut(E1)) is the cohomology class represented by the cocycle
cτ := 3

√
p/τ( 3

√
p). To find a point Y in the set (3), we may take any Q ∈ E1(L) and

consider the twisted trace

Q′ = Q + ωQσ + ω2Qσ2
∈ E1(L).

The point Q′ has the property that (Q′)σ = ω2(Q′).
Now suppose that Q′ is nontorsion. Consider then the point Y = Q′ + Q′ in

the set (3); either it will be nontorsion, or else it will be trivial and then instead√
−3Q′ is a nontorsion point in the set (3). Thus in any case, a nontorsion Q′ will

yield a nontorsion Y .
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2.5. Mock Heegner points on X0(27). To summarize, if we can construct
a point Q ∈ E1(L), then by taking a twisted trace we can construct a (hopefully
nontorsion) point Y ∈ Ep(Q). We look to CM theory to construct the point Q.

We have a modular parametrization

Φ : X0(27) ∼−→ E1 : Y 2 + 9Y = X3 − 27

z 7→ (X, Y ) =
(

η(9z)4

η(3z)η(27z)3
,

η(3z)3

η(27z)3

)
,

where η(z) = q1/24
∏∞

n=1(1− qn) is the Dedekind eta-function and q = exp(2πiz).
In this case, the map Φ is an isomorphism of curves.

The field L = K( 3
√

p) is a cyclic extension of K with conductor

f(L/K) = f =

{
3p, if p ≡ 4, 7 (mod 9);
p, if p ≡ 8 (mod 9).

As L is of dihedral type over Q, it is contained in the ring class field of K of
conductor f , denoted Hf . LetOK,f = Z+fOK denote the order ofOK of conductor
f , and let P ∈ X0(27)(Hf ) be defined by a cyclic 27-isogeny between elliptic curves
with CM by OK,f . We define the point Q = TrHf /L Φ(P ) ∈ E1(L) and ask: Is the
point Q nontorsion?

Let us compute an example with p = 7. For an element z in the complex upper
half plane H, denote by 〈z〉 the elliptic curve C/〈1, z〉. We have a cyclic 27-isogeny,
obtained as a chain of 3-isogenies, given by

(4) 〈ωp/3〉 → 〈ωp〉 → 〈(ωp + 2)/3〉 → 〈(ωp + 2)/9〉;

this isogeny has conductor 3p. Under the identification Γ0(N)\H ∼= Y0(N), an
element z ∈ H represents the isogeny 〈z〉 → 〈Nz〉. The isogeny in (4) is represented

by the point z = M(ωp/3), where M =
(

2 1
3 2

)
∈ SL2(Z). In this case, we have

Hf = H3p = K(α) with α = 6
√
−7 = 6

√
7 exp(πi/6). One computes that the point

Φ(z) = P = (X, Y ) ∈ E1(H3p), in Weiestrass coordinates as above, agrees with the
point

X = (−180ω − 90)α5 + (−216ω − 216)α4 + 1
2 (−345ω − 690)α3

− 414α2 + (330ω − 330)α + 1
2 (1581ω),

Y = (−6210ω + 6210)α5 − 14877ωα4 + (−23760ω − 11880)α3

+ (−28458ω − 28458)α2 + (−22725ω − 45450)α− 54441

to the precision computed. One can then verify computationally that

Q = TrHf /L(P ) = (3ω, 0) ∈ E1(L)

is torsion!
The method we have outlined thus fails in this case; we see similar behavior

for the eight other distinguished cyclic 27-isogenies of conductor 3p, as well as for
other values of p.
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3. Satgé’s construction

3.1. Satgé’s construction. Our first attempt at constructing a mock Heeg-
ner point using the parametrization X0(27) → E1 (in §2.5) yielded only torsion
points on Ep(Q). We now exhibit a similar construction which does work, but not
one which addresses Sylvester’s conjecture.

Theorem (Satgé [Sa2]). If p ≡ 2 (mod 9), then #E2p(Q) = ∞. If p ≡ 5
(mod 9), then #E2p2(Q) = ∞.

Another result in the same vein is the following.

Theorem (Coward [C]). If p ≡ 2 (mod 9), then #E25p(Q) = ∞. If p ≡ 5
(mod 9), then #E25p2(Q) = ∞.

Our expository treatment of Satgé’s theorem will treat the first case, where
p ≡ 2 (mod 9); see also the undergraduate thesis of Balakrishnan [Ba]. The second
statement follows similarly. Our proof proceeds different than that of Satgé; his
original proof is phrased instead in the language of modular forms.

3.2. Twisting. Instead of the parametrization X0(27) → E1, we use

Φ : X0(36) ∼−→ E : y2 = x3 + 1.

Over K, the cubic twist of E by 3
√

p is isomorphic to E2p. (Over Q, it is the
sextic twist of E by 6

√
−27p2, given by y2 = x3− 27p2, which is isomorphic to E2p;

the quadratic twist by
√
−3 yields a curve which is isomorphic over K, as well as

3-isogenous over Q.) The twisting is then given by the group isomorphism

E2p(Q) ∼= {P = (r 3
√

p, s
√
−3) ∈ E(L) : r, s ∈ Q}

= {P ∈ E(L) : Pσ = cτP for all τ ∈ Gal(L/Q)}

where [cτ ] ∈ H1(Gal(L/Q),Aut(E)) is the represented by the cocycle

cτ :=
τ(β)
β

, where β = 6
√
−27p2.

3.3. From H6p to H3p. From the cyclic 36-isogeny 〈ωp/6〉 → 〈6ωp〉 of con-
ductor 6p, we obtain a point P ∈ E(H6p), where E : y2 = x3 + 1.

We have the following diagram of fields.

H6p = H3p(
3
√

2)

3

H3p

(p+1)/3

L = K( 3
√

p)

3

K

2

Q
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As we now describe, it turns out that the trace from H6p to H3p is unnecessary
in the trace from H6p to L. Let

ρ ∈ Gal(H6p/H3p) ⊂ Gal(H6p/K)

satisfy ρ( 3
√

2) = ω 3
√

2.

Proposition. For P ∈ E(H6p) as defined above, we have

P ρ = P + (0, 1),

where (0, 1) is a 3-torsion point.

This proposition can be proved using the methods we introduce below, and so
is left to the reader. It follows from this proposition that TrH6p/H3p

P = 3P . To
eliminate this factor of 3, we introduce the point

T = (− 3
√

4,−
√
−3) ∈ E[3](H6)

and note that it also satisfies T ρ = T + (0, 1). Thus letting

(5) PT := P − T,

we find (PT )ρ = PT , so PT ∈ E(H3p).

3.4. From H3p to Q. Define

(6) Q = TrH3p/L PT ∈ E(L).

We now claim that the following equation holds.

Proposition. Let σ ∈ Gal(L/K) satisfy σ( 3
√

p) = ω 3
√

p. Then we have

(7) Qσ = ωQ + (0,−1).

The point (0,−1) is a 3-torsion point. It follows from equation (7) that the
twisted trace is just

Y := Q + ω2Qσ + ωQσ2
= 3Q ∈ E(L),

which via twisting corresponds to a point Y ′ ∈ E2p(K).
To conclude the proof of Theorem 3.1, assuming that equation (7) holds, we

need to prove that Y , and hence Y ′, is nontorsion. It suffices to prove that Q is
nontorsion. But Etors(L) = {O, (0,±1)}, and no S in this set satisfies equation (7):
indeed, Sσ = S = ωS, so equation (7) for S would yield the contradiction S =
S+(0,−1). Note that this argument proves not only that the point Y ′ is nontorsion,
but that it is not divisible by 3 in the group E2p(K)/E2p(K)tors.

3.5. The Gal(L/K)-action. We now prove the equation (7). We will in
fact prove an equation for P ∈ E(H6p). We choose a lift of σ ∈ Gal(L/K) to
Gal(H6p/K). Namely, we let ασ = 1 + 2pω and let Iσ = αOK ∩ OK,6p. One can
show directly that under the Artin map

(8) Frob : IK,6p/PZ,6p
∼−→ Gal(H6p/K),

the ideal Iσ corresponds to an element σ ∈ Gal(H3p/K) such that σ( 3
√

p) = ω 3
√

p.
In (8), IK,6p denotes the group of fractional ideals of K that are relatively prime to
6p, and PZ,6p denotes the subgroup generated by principal ideals (α) where α ∈ OK

satisfies α ≡ a (mod 6p) for some a ∈ (Z/6pZ)×.
The equation we will prove is

(9) Pσ = ωP + (−1, 0),
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from which one can deduce equation (7) using equations (5) and (6). The proof
uses two ingredients: an explicit calculation with the Shimura reciprocity law, and
an explicit identification of this action with a modular automorphism.

We begin with the first of these two steps in the following lemma.

Lemma. We have Pσ = 〈3ωp/2〉 → 〈(2ωp + 1)/3〉.

Proof. The point P is given by the isogeny 〈ωp/6〉 → 〈6ωp〉. The Shimura
reciprocity law ([Sh, §6.8]) implies that Pσ is given by the isogeny

I−1
σ · 〈ωp/6〉 → I−1

σ · 〈6ωp〉.

An explicit calculation shows that I−1
σ ·〈ωp/6〉 ∼ 〈3ωp/2〉, where ∼ denotes homoth-

ety equivalence. Similarly, we find that I−1
σ 〈6ωp〉 ∼ 〈(2ωp + 1)/3〉, thus concluding

the proof. �

We now proceed with the second step. Any element of the normalizer of Γ0(36)
in the group PSL2(R) provides by linear fractional transformations an automor-
phism of Γ0(36)\H∗ = X0(36). The group of such modular automorphisms is
denoted N(Γ0(36)). In the second step of the proof of (9), we find a modular
automorphism M such that M(P ) = Pσ. Moreover, since X0(36) is a curve of
genus one, it is easy to determine its automorphism group; we may then identify M
explicitly as an element of this automorphism group to obtain the relation (9). For
more detail concerning the results on modular automorphisms used in this section,
see [O].

We now look for a matrix M in N(Γ0(36)) such that M(P ) = Pσ. Let H
be the subgroup of N(Γ0(36)) generated by the Atkin-Lehner involutions w4 =(

4 −1
36 −8

)
and w9 =

(
9 2
36 9

)
, together with the exotic automorphism e =

(
1 0
6 1

)
of order 6—there exists such an exotic automorphism

(
1 0

N/t 1

)
normalizing Γ0(N)

whenever t ∈ Z>0 satisfies t | 24 and t2 | N (see [O]). The group H is a solvable

group of order #H = 72. One computes directly that M =
(

9 −4
36 −15

)
∈ H

satisfies M(P ) = Pσ, using the previous lemma.
Now the matrix M corresponds to an element of Aut(X0(36)), the automor-

phism group of X0(36) as an abstract curve. Via the isomorphism Φ, we may
view X0(36) as the elliptic curve E and hence write M(Z) = aZ + b for some
a ∈ Aut(E) ∼= µ6 and some b ∈ E(K). To determine a and b, we evaluate M on
the cusps. The point ∞ ∈ X0(36) corresponds under Φ to the origin of the elliptic
curve. We find that M(∞) = 1/4, which corresponds to the point Φ(1/4) = (−1, 0).
Thus b = (−1, 0). Similarly, evaluating at the cusp 0, we find that a = ω. Putting
these pieces together, we have Pσ = M(P ) = ωP + (−1, 0) as claimed.

3.6. An example with p = 11. We illustrate the method of the preceding
section with p = 11. Beginning with z = ωp/6, we compute P ∈ E(H6p) with
x-coordinate which satisfies

x36 + 462331656ωx35 + 11767817160ω2x34 + 179182057872x33 + 543458657808ωx32

+ . . . + 50331648x3 + 1939159514087424ωx2 + 16777216 = 0

to the precision computed.
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We next compute PT = P − T ∈ E(H3p), where T = (− 3
√

4,−
√
−3) as above.

The point PT has x-coordinate which satisfies

25x12 + (354ω − 270)x11 + (−5313ω − 3432)x10 + (2376ω + 17578)x9

+ (21879ω − 297)x8 + (−6732ω − 24552)x7 + (−16632ω + 61116)x6

+ (3168ω − 9504)x5 + (−12672ω − 45936)x4 + (−19008ω − 2816)x3

+ (10560ω)x2 + (17664ω − 5376)x + 10240 = 0.

The trace Q = TrH3p/L PT ∈ E(L), again to the precision calculated, is the
point

Q =

„
−1849

5776
3
√

11
2

+
645

5776
ω

3
√

11 +
225ω + 225

5776
,

27735ω + 55470

438976
3
√

11
2

+
−9675ω + 9675

438976
3
√

11 +
871202ω + 435601

438976

«
.

We indeed find that the equation Qσ = ωQ+(0, 1) holds as in (7). Finally, the
twisted trace is

Y = 3Q =
(
−767848016929

79297693200
ω

3
√

11,
672808015029320783
11661518761992000

√
−3

)
.

The point Y gives rise to the solution (as in (1))(
684469533791312783
112919729369578740

)3

+
(
−661146496267328783

112919729369578740

)3

= 22,

which is twice a Mordell-Weil generator (17299/9954, 25469/9954).

4. Sylvester’s conjecture, revisited

4.1. A theorem of Elkies: A breakthrough. We now return to the original
question of Sylvester’s conjecture. In 1994, Elkies announced the following result
[E], which remains unpublished.

Theorem (Elkies). If p ≡ 4, 7 (mod 9), then #Ep(Q) = #Ep2(Q) = ∞.

The method of Elkies can be sketched as follows. Write p = ππ ∈ Z[ω], where
π, π ≡ 1 (mod 3). Elkies defines a modular curve X defined over K, and constructs
an explicit modular parametrization

Φ : X → Eπ : x3 + y3 = π

defined over K. He uses the map Φ to define a point on Eπ over K( 3
√

π̄), and twists
to get a point in Ep(K).

4.2. Mock Heegner points, revisited. Using the strategy of mock Heegner
points, we have re-proved the theorem under a further hypothesis on p.

Theorem. If p ≡ 4, 7 (mod 9) and 3 is not a cube modulo p, then #Ep(Q) =
#Ep2(Q) = ∞.

We remark that two-thirds of primes p ≡ 4, 7 (mod 9) have that 3 is not a cube
modulo p.

We only provide a sketch of the proof. Consider the modular parametrization
Φ : X0(243) → E9 : x3 + y3 = 9; the curve X0(243) = X0(35) has genus 19. The
modular automorphism group of X0(243) is isomorphic to Z/3Z × S3, where the
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S3 factor is generated by
(

28 1/3
−81 1

)
and the Atkin-Lehner involution w243 =(

0 −1
243 0

)
. The modular parametrization Φ is exactly the quotient of X0(243)

by this S3.
We start with a cyclic 243-isogeny of conductor 9p, which yields a point P ∈

E9(H9p). One can descend the point P ∈ E9(H9p) with a twist by 3
√

3 to a point
Q ∈ E1(H3p). We next consider the trace R = TrH3p/L Q ∈ E1(L). We show that
Rσ = ωR+T where σ( 3

√
p) = 3

√
p and T is a 3-torsion point. Thus R yields a point

Y ∈ Ep2(K) by twisting. (This depends on the choice of P ; another choice yields
a point on Ep(K).)

Unfortunately, there exist points S ∈ E1(K)tors that satisfy the equation Sσ =
S = ωS + T ! Indeed, in certain cases the point R (equivalently, Y ) is torsion; see
section 4.4 below for a discussion of when we expect R to be torsion. To prove that
the point R is nontorsion when 3 is not a cube modulo p, we instead consider the
reduction of R modulo p. The prime p factors as (pp)3 in L, so we consider the pair

(R mod p, R mod p) ∈ (E1)Fp × (E1)Fp
∼= E1(Fp)2.

By an explicit computation with η-products, we are able to show that when 3 is not
a cube modulo p, this reduction is not the image of any torsion point S ∈ E1(L)tors.

4.3. Example. We illustrate our method with p = 7.
The isogeny 〈7ω/9〉 → 〈(7ω− 1)/27〉 is a cyclic 243-isogeny with conductor 63,

which yields a point P = (x, y) ∈ E9(H63) with

x6 − 81x3 + 5184 = 0, y6 + 63y3 + 4536 = 0.

The twist Q = (x, y) ∈ E1(H21) has

x2 + 3ω2x + 4ω = 0, y6 + 7y3 + 56 = 0.

We again have H21 = K(α) where α6 + 7 = 0; we then recognize

Q = ( 1
2ω2α3 − 3

2ω2,− 1
2α4 + 1

2α)

to the precision computed. The trace R = TrH21/L Q ∈ E1(L) is then simply

R = (− 3
2

3
√

72, 11
2 ω2),

which yields the solution Y = (11/3,−2/3), i.e.(
11
3

)3

+
(
−2
3

)3

= 72.

4.4. A Gross-Zagier formula. A direct näıve analogue of the Gross-Zagier
formula in this case would state that

ĥ(Y ) .= L′(E9/K, χ3p, 1),

where χ3p : Gal(H3p/K) → µ3 is the cubic character associated to the field K( 3
√

3p).
Since formally

L(E9/K, χ3p, s) = L(Ep/Q, s)L(E3p2/Q, s),
this formula becomes

ĥ(Y ) .= L′(Ep/Q, 1)L(E3p2/Q, 1).

When 3 is not a cube modulo p, one can prove that rk(E3p2(Q)) = 0 (see [Sa1]),
which motivates the fact that the point Y in our construction is nontorsion in this



HEEGNER POINTS AND SYLVESTER’S CONJECTURE 11

case. Furthermore, one can show that 3 is a cube modulo p if and only if either 3
divides #X(E3p2/Q) or rk(E3p2/Q) > 0; the order of this Tate-Shafarevich group
is conjecturally the “algebraic part” of L(E3p2/Q, 1) when this value is non-zero.
Thus the “näıve analogue of Gross-Zagier” combined with the BSD conjecture
suggest the equivalence

Y is divisible by 3 in Ep(K)/Ep(K)tors ⇐⇒ 3 is a cube modulo p.

The proof sketched in §4.2 yields the forward direction of this implication uncon-
ditionally. It should be possible to prove the converse as well, though we have not
yet attempted to do so.

In our description of Satgé’s construction with p ≡ 2 (mod 9), we constructed
a point on the cubic twist of E2 by 3

√
p, so a direct analogue of Gross-Zagier would

yield
ĥ(Y ) .= L′(E2p/Q, 1)L(E2p2/Q, 1).

In this case one can prove that rk(E2p2(Q)) = 0 and 3 - #X(E2p2/Q) without
extra condition. This provides intuition for why Satgé’s construction produces
points that are provably not divisible by 3 (in particular nontorsion) without any
extra condition, whereas our result for p ≡ 4, 7 (mod 9) requires an extra condition.

Question. What is the precise statement of the Gross-Zagier formula in the
cases when the Heegner hypothesis does not hold?

This is the subject of current research by Ben Howard at Boston College. Some
aspect of this new formula (perhaps some extra Euler factors which sometimes
trivially vanish) would have to account for various cases when the mock Heegner
point is torsion even when the derivative of the L-function is not zero. Also, this
formula would have to exhibit a dependence on the choice of CM point—the formula
will in general not depend only on the conductor as in the classical Heegner case.

4.5. The case p ≡ 8 (mod 9). What remains untouched by our discussion
so far is the case p ≡ 8 (mod 9) in Sylvester’s conjecture. In this case, we may
use the parametrization Φ : X0(243) → E3 and a cyclic isogeny of conductor 9p,
corresponding to a point P ∈ E3(H9p).

Adding a torsion point, the point P descends with a twist to a point Q ∈
E1(H3p), and a twisted trace Y ∈ Ep(Q). Here, Gross-Zagier would imply that

ĥ(Y ) .= L′(E3/K, χ9p, 1) = L′(Ep/Q, 1)L(E9p2/Q, 1).

There seems to be no simple criterion for L(E9p2/Q, 1) 6= 0, though one could hope
to prove an analogue of the formulas of Rodriguez-Villegas and Zagier [R-VZ].

Question. When p ≡ 8 (mod 9), can one prove that the point Y is nontorsion
when L(E9p2/Q, 1) 6= 0, or perhaps at least when 3 does not divide the algebraic
part of L(E9p2/Q, 1)?
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