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1 Introduction

Fix a prime number p. Let F be a totally real field, ψ denote a totally even character of F

and ω denote the Teichmüller character. The Iwasawa main conjecture in its simplest form

is an equality up to units of two power series: a power series G(T ) constructed from the

p-adic L-function Lp(ψ, s) and the characteristic power series f(T ) of an Iwasawa module

associated to χ = ψ−1ω. An application of Iwasawa’s analytic class number formula shows

that it is enough to prove the divisibility of any one of these power series by the other. Wiles

[19] proved the Iwasawa main conjecture building on the works [15,16] by showing that G(T )

divides f(T ). This amounts to constructing, for each zero of G(T ) with multiplicity m, an

unramified extension of the field cut out by ψ of Zp-rank m with a specified Galois action.

Wiles requires special arguments to handle two kinds of zeros beyond the generic case.

These are the Leopoldt zeros (which conjecturally do not exist) at s = 1 and trivial zeros

(which do exist) at s = 0. For the Leopoldt zeroes, the argument in [19] in the generic case

only gives an extension of rank δ, the Leopoldt defect, whereas the main conjecture requires

an extension of rank δ + 1. If δ > 0, i.e. Leopoldt’s conjecture fails, then there exists a

non-cyclotomic Zp-extension of F . Wiles constructs the required extensions by twisting by
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a sequence of characters of increasing p-power order along the non-cyclotomic Zp-extension

and a suitable limiting process. Ventullo provided an alternate direct construction of these

extensions in [17].

The purpose of this note is to give a direct construction of unramified abelian extensions

corresponding to trivial zeros at s = 0 using ideas from our recent work [5], just as Ventullo

did in the setting of Leopoldt zeros at s = 1. For simplicity, we restrict to a special case (see

Theorem 2.3). Suppose there are r primes p above p in F such that χ(p) = 1. There is a

direct arithmetic construction of extensions associated to such primes p. The Gross–Kuz’min

conjecture predicts that these are all the extensions corresponding to the point s = 0. Wiles

constructs all the extensions required for the main conjecture at s = 0 unconditionally,

even if Gross–Kuz’min fails, using an ingenious method that is now often called “horizontal

Iwasawa theory.”

The general argument for proving the main conjecture using Ribet’s method proceeds as

follows: one proves that the p-adic L-function divides the congruence ideal by constructing a

cusp form congruent to an Eisenstein series modulo the p-adic L-function. The second step is

to prove that the congruence ideal divides the characteristic ideal by constructing cohomology

classes with appropriate local properties. This approach does not work directly in the case

of trivial zeroes. More precisely, the congruence ideal is strictly smaller and hence does

not divide the characteristic ideal. This occurs because the cohomology classes constructed

using the congruence ideal do not have the required local properties. This phenomenon also

occurs in the work of Hida–Tilouine [13] on the anticyclotomic main conjecture and they

give a separate proof for the trivial zeros. The difficulty in the construction of cohomology

classes with prescribed local behaviour arises from “local p-indistinguishability” i.e. the

Hecke eigenvalues at primes above p are equal.

Two observations make our direct construction of extensions corresponding to trivial zeros

possible. Firstly, we use the construction of a cusp form from [4] that is a slightly refined

version of the method in [19]. This allows for the definition of an Eisenstein homomorphism

on the cuspidal Hida Hecke algebra in weight 1 as described in Theorem 4.1. Secondly, we

take a larger module adjoining all Ap/Cp to the usual module of b(σ) (see Section §5 below)

in which our cohomology class takes values. This allows us to show that the cohomology

class is unramified everywhere.

This note is written for the proceedings of the International Colloquium on Arithmetic

Geometry organised in January 2020 at TIFR, Mumbai. We thank the organisers for inviting

us to this wonderful event.

2 The main conjecture

In this section we recall the main conjecture and state our result on trivial zeroes. Let p be

a prime number. For any number field F , let Fcyc be the cyclotomic Zp-extension of F .

Let F be a totally real number field and let χ be a one dimensional Artin character of
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F . Put Fχ for the field cut out by χ, so χ is a faithful character of Gal(Fχ/F ). Following

Greenberg [11], we say that χ is of type W if Fχ ⊂ Fcyc and of type S if Fχ ∩ Fcyc = F .

There are characters that are neither of type S or W but we do not need to consider such

characters in this article.

We next assume that χ is of type S and that Fχ is a CM field. Put

q =

{
p if p is odd

4 if p = 2.

Let H = Fχ(µq). Let L be the maximal unramified abelian pro-p-extension of Hcyc. Define

X = Gal(L/Hcyc). This is a module for Gal(Hcyc/F ) under the usual conjugation action.

Since χ is of type S, there is a decomposition

Gal(Hcyc/F ) ∼= Gal(H/F )×Gal(Fcyc/F ).

Let E be a sufficiently large finite extension of Qp containing the pth roots of 1 and all

values of the character χ. Let X(χ) ⊂ X ⊗ E be the subspace on which the first factor

Gal(H/F ) acts via χ. Fix a topological generator γ of Gal(Hcyc/H) ∼= Gal(Fcyc/F ). Let

fχ(T ) be the characteristic polynomial of γ − 1 acting on X(χ).

As in §1 let ψ = χ−1ω. We recall the power series Gψ(T ) interpolating L-values. Let

u ∈ Z∗p be such that γ(ζ) = ζu for every ζ ∈ µp∞ . Define

Hψ(T ) =

{
ψ(γ)(T + 1)− 1 if ψ is of type W

1 otherwise
(1)

Then Cassou-Noguès [1] and Deligne–Ribet [8] proved that there exists a unique power series

Gψ(T ) ∈ Zp[ψ][[T ]] such that

Gψ(un − 1)

Hψ(un − 1)
=
∏
p∈Sp

(1− ψω−n(p)Npn−1)L(ψω−n, 1− n), (2)

for every positive integer n. The following theorem is proven in Wiles [19] (following Mazur–

Wiles [15] in the case when F = Q).

Theorem 2.1 (The main conjecture). We have the equality of ideals

(fχ(T )) = (Gψ(u(1 + T )−1 − 1))

in Zp[[T ]]⊗ E.

Iwasawa’s interpretation of the analytic class number formula implies that it is enough

to prove one inclusion for deducing the equality in the theorem. More precisely, If nα(χ) and
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mα(χ) denote the multiplicity of the zero α of fχ(T ) and Gψ(u(T + 1)−1 − 1), respectively,

then Iwasawa’s formula gives ∑
χ

nα(χ) =
∑
χ

mα(χ)

for fixed α and χ running through all odd characters of a fixed extension of F . Wiles proves

the inclusion (fχ(T )) ⊂ (Gψ(u(1 + T )− 1)), i.e. the inequality nα(χ) ≥ mα(χ) for all χ and

all α. Wiles proves this by constructing, for every α and χ, a subspace of X(χ) on which

γ − 1 has characteristic polynomial (T − α)mα(χ).

If α /∈ {ζ−1 : ζ ∈ µp∞} (trivial zeros) and α 6= u−1 when χ = ω (Leopoldt zeroes), then

the inequality is proven in two steps. Firstly, it is proven that mα(χ) is bounded above by

the order of the zero, n′α(χ), of the characteristic polynomial of γ−1 acting on a “congruence

ideal.” Secondly, it is proven that n′α(χ) is bounded above by the nα(χ).

A result of Colmez [3] shows that Leopoldt’s conjecture for Fχ and p is equivalent to

the statement mu−1(ω) = 0. If Leopolodt’s conjecture fails, then Wiles’ general strategy

described above only shows that nu−1(ω) ≥ mu−1(ω) − 1. Wiles proves that nu−1(ω) ≥
mu−1(ω) using a suitable limiting process by twisting along the non-cyclotomic Zp-extension

arising from the failure of Leopoldt’s conjecture. A direct proof of the inequality is given by

Ventullo [17] using the construction in [4].

The situation for trivial zeroes is similar. The quantitymζ−1(χ) can in general be positive,

as trivial zeros do exist. If r is the number of primes of F above p that split completely

in Fχ, then the Gross–Kuz’min conjecture states that mζ−1(χ) = r. Furthermore, there

is an arithmetic construction due to Coates–Lichtenbaum [2, Theorem 2.1] showing that

nζ−1(χ) ≥ r. However, without the Gross–Kuz’min conjecture, we cannot directly deduce

that nζ−1(χ) ≥ mζ−1(χ).

The general strategy described above does not yield enough unramified extensions as

the quantity n′ζ−1(χ) may be strictly greater than nζ−1(χ). Wiles devised the method of

horizontal Iwasawa theory to construct extensions corresponding to trivial zeros by twisting

by characters of increasing p-power order.

In this note we explain the recent refinement of the Ribet–Wiles method in [5] for directly

constructing unramified extensions corresponding to trivial zeros. This uses the refined

construction of cusp forms given in [4]. To avoid unnecessary technicalities we restrict to

“Case 1” in [7], i.e. there is a prime p of F above p such that χ(p) 6= 1. The same ideas work

in other cases described in [7]. Furthermore, using the integral constructions of cusp forms

given in [5] it should be possible to give a direct proof of the equivariant main conjecture

without assuming µ = 0 by these methods. We note that Johnston–Nickel [14] have already

proved this result using Wiles’s results and the strong Brumer–Stark conjecture proven in [5].

However, the simpler situation considered here best explains the idea behind our construction

of unramified classes in the locally p-indistinguishable case.

The trivial zeros are zeros of the form α = ζ − 1 for ζ ∈ µp∞ . As the following lemma

shows, we may twist by characters of type W to assume that α = 0.
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Lemma 2.2. Let ψ be a character of type S and ρ a character of type W . Put ρ(γ) = ζ−1.

Then

ordT=ζ−1Gψ(u(T + 1)−1 − 1) = ordT=0Gψρ(u(T + 1)−1 − 1).

ordT=ζ−1 fχ(T ) = ordT=0 fχρ(T ).

Proof. Note that

Gψρ(T ) = Gψ(ζ−1(T + 1)− 1) = Gψ(ζ−1(T − (ζ − 1))).

This proves the first claim. For the second claim see Greenberg [11, Proposition 3].

The lemma implies that it is enough to consider the order of the zero at T = 0. Our

main result is a simplified proof of the following special case of Wiles’ theorem.

Theorem 2.3. Assume that there is a prime p of F above p such that χ(p) 6= 1. Then we

have

ordT=0 fχ(T ) ≥ ordT=0 Gψ(u(T + 1)−1 − 1).

To prove the theorem it is enough to show that X(χ) has a subspace on which γ − 1 has

characteristic polynomial T ran , where

ran = ordT=0 Gψ(u(T + 1)−1 − 1).

We need some notation: Let OE be the ring of integers of E and put Λ = OE[[T ]]. Let

Λ(1) = OE[[T ]](T ) be the localization in “weight 1”. Recall the Λ-adic cyclotomic character

ε : GF → Λ∗ given by

ε(σ) = (1 + T )logp〈εcyc(σ)〉/ logp u,

where εcyc is the p-adic cyclotomic character and 〈εcyc(σ)〉 denotes its image under the

projection Z∗p → 1 + qZp.

We must prove that the E dimension of X
(χ)
(1) = X(χ) ⊗Λ Λ(1) is at least ran. We follow

the strategy in [6, Section 4]. We establish the desired lower bound on the dimension of

X
(χ)
(1) by comparing it to an E-vector space B of dimension at least ran constructed using

Hilbert modular forms. The following lemma shows that such homomorphisms are classified

by certain Galois cohomology classes.

Lemma 2.4. Let r denote the number of primes of F above p that split completely in Fχ.

Let B denote an Λ(1)-module endowed with the continuous GF -action in which GF acts by

χε, and let κ ∈ H1(GF , B) a Galois cohomology class such that

• κ is everywhere unramified and locally trivial at all primes above p.

• If B0 is the subspace of B generated by the image of the restriction

κ|GHcyc
∈ H1(GHcyc , B) = Homcont(GHcyc , B),

then the E-vector space B/B0 has dimension at most r.
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Then dimE(X
(χ)
(1) ) ≥ dimE(B).

Proof. Let Y be the Galois group over Hcyc of the maximal abelian unramified p-extension

of Hcyc in which all primes above p split completely. As before we define Y
(χ)

(1) . Then Y
(χ)

(1) is

a codimension r subspace of X
(χ)
(1) (see [9, Proposition 6.1]). The Gross–Kuz’min conjecture

implies that Y
(χ)

(1) = 0 and that the dimension of X
(χ)
(1) is r, but we do not assume this.

If we have κ as above, then the fixed field of the kernel of κ|GHcyc
is an extension of Hcyc

that is everywhere unramified and such that the primes above p split completely. By the

definition of Y , we obtain a surjective homomorphism Y −→ B0. As κ|GHcyc
is restricted from

a class in H1(GF , B) and GF acts as χε on B, this surjection factors through Y
(χ)

(1) −→ B0.

Therefore

dimE(X
(χ)
(1) ) ≥ dimE(Y

(χ)
(1) ) + r ≥ dimE(B0) + r ≥ dimE(B).

The rest of the article is devoted to the construction of a vector space B and cohomology

class κ satisfying the conditions of Lemma 2.4 such that dimE B ≥ ran. By the lemma, we

will then obtain dimE X
(χ)
(1) ≥ ran, i.e. Theorem 2.3.

3 Construction of modular forms

In this section we recall the construction of modular forms from [4, 7]. For the notation we

refer to [7, Section 3], recalling only the essential aspects here. For each k ∈ Zp we have the

“specialization to weight k” OE-algebra homomorphism

νk : Λ −→ OE given by T 7→ uk−1 − 1.

Recall that Λ(1) = OE[[T ]](T ) is then the localization in “weight 1”.

Let n denote the conductor of χ. We denote byM(n, χ) the Λ-module of Λ-adic Hilbert

modular forms for F with level n and character χ. For each F ∈ M(n, χ) and each integer

k ≥ 2, the specialization νk(F) belongs to the space Mk(np, χω
1−k) of Hilbert modular forms

for F of weight k, level np and character χω1−k. The subspace of cusp forms in M(n, χ) is

denoted S(n, χ). The Λ-module M(n, χ) is equipped with an action of Hecke operators Tl
for primes l - np and Ul for l | p. Following Hida, we let

e = lim
n→∞

∏
p|p

Up

n!

be the ordinary projector. Denote by

Mo(n, χ) = eM(n, χ), So(n, χ) = eS(n, χ)
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the spaces of Hida families and cuspidal Hida families, respectively. we denote by T̃ and T

the Λ-algebras of Hecke operators acting on Mo(n, χ) and So(n, χ), respectively, generated

by the operators Tl for l - np and Ul for l | np.
We put

R = {p | p : χ(p) = 1}

and

R′ = {p | p : χ(p) 6= 1}.

We are assuming, for simplicity, that R′ is non-empty. We also introduce notation for the

p-adic L-function. Let Lp(χω) ∈ Λ(1) such that for every even integer k we have

νk(Lp(χω)) =
Gχω(uk − 1)

Hχω(uk − 1)
,

so that νk(Lp(χω)) is the value usually denoted Lp(χω, 1− k).

Next we recall the modular form Fk from [4]. We are in “Case 1” in [7] (R′ is non-empty).

Define

Fk = Ek(1, χω
1−k)− E1(1, χR′)Gk−1

Lp(χω, 1− k)

L(χR′ , 0)

The forms Ek(1, χω
1−k) andGk−1 interpolate to Hida families E(1, χ) and G with the property

that

νk(E(1, χ)) = Ek(1, χω
1−k), νk(G) = Gk−1.

Therefore we get Λ-adic family:

F̃ = E(1, χ)− E1(1, χR′)G
Lp(χω)

L(χR′ , 0)
.

The following theorem is proven in [4, Corollary 2.10 and Proposition 3.4].

Theorem 3.1. There is a Hecke operator t ∈ T̃⊗Λ Λ(1) such that F := t · e · F̃ is a cuspidal

Hida family and such that t · e fixes E(1, χ).

We remark here that we may choose t such that the family F is normalized. Using the

notation in [4] it is clear that the Hecke operators Tη,ψ and Tχ,ω1−k act as units in Λ(1) on

E(1, χ). Therefore we take t such that F is normalized and acts at 1 on E(1, χ).

4 Hecke algebra and Hecke action

In this section we recall theorems describing the action of Hecke operators on the cusp form

F constructed above. It is convenient to work with the uniformizer of Λ(1) given by

π =
1

logp u
T.
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Recall that ran(χ) is the order of vanishing of Lp(χω) i.e. the largest power of the ideal (π)

that contains Lp(χω). Whenever there is no ambiguity we denote ran(χ) by ran.

Any Hida family is determined by its Fourier expansion; there is a canonical Λ-algebra

embedding

c : So(n, χ)(1) −→
∏

a⊂OF

Λ(1), H 7→ (c(a,H ))a⊂OF .

Define H to be the image of the Hecke orbit of F under the reduction of c modulo πran .

This is a finitely generated module over Λ(1)/(π
ran) = E[π]/(πran). Therefore we obtain a

canonical Λ-algebra homomorphism

ϕ : T −→ EndE[π]/(πran )H.

Now since πran divides Lp(χω), we have a congruence of Fourier expansions

F ≡ E(1, χ) (mod πran).

As a result we obtain the following.

Theorem 4.1. Assume that R′ is non-empty. The image of the map ϕ is isomorphic to

E[π]/(πran). Furthermore, ϕ maps the Hecke operators as follows:

Tl 7→ 1 + χε(l) for l - np,
Ul 7→ 1 for l | np.

5 Construction of cohomology classes

Let m be the unique maximal ideal containing kernel of ϕ. Let Tm denote the completion of T

with respect to m and set K = Frac(Tm). Then a theorem of Hida and Wiles [18, Theorems

2 and 4] gives a Galois representation

ρ : GF −→ GL2(K)

such that

(1) ρ is unramified outside np.

(2) For all primes l - np, the characteristic polynomial of ρ(Frobl) is given by

char(ρ(Frobl))(x) = x2 − Tlx+ χ(l)ε(l).

(3) For q | p, let GF,q ⊂ GF denote a decomposition group at q. We have

ρ|GF,q ∼
(
χεη−1

q ∗
0 ηq

)
, (3)

where ηq : GF,q → T∗m is the unramified character given by ηq(rec($−1)) = Uq. Here $

denotes a uniformiser of F ∗q and rec : F ∗q → Gab
F,q is the local reciprocity map.
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For each q | p, let Vq be the eigenspace of ρ|GF,q , i.e. the span of the vector
(

1
0

)
in the basis

for which (3) holds. We choose an element τ ∈ GF as in [7, Lemma 4.3]; hence χ(τ) 6= 1 and

the subspace Vq projected to each factor of K is not stable under ρ(τ). We fix a basis such

that ρ(τ) =

(
λ1 0
0 λ2

)
, where λ1 ≡ 1 (mod m) and λ2 ≡ −1 (mod m). For a general σ, we

write

ρ(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
.

For each q | p, there is a change of basis matrix Mq =

(
Aq Bq

Cq Dq

)
∈ GL2(K) such that

(
a(σ) b(σ)
c(σ) d(σ)

)
Mq = Mq

(
χεη−1

q ∗
0 ηq

)
. (4)

The choice of τ ensures that Aq and Cq are invertible in K. Furthermore, equating the upper

left hand entries in (4) yields:

b(σ) =
Aq

Cq

(a(σ)− χεη−1
q (σ)) for all σ ∈ GF,q. (5)

Let ϕm : Tm → E[π]/(πran) denote the extension of the homomorphism ϕ to Tm. Put

I = ker(ϕm). Then, using the choice of basis and following the proof in [7, Lemma 4.4], one

can show that

a(σ) ≡ 1 (mod I), d(σ) ≡ ε(σ)χ(σ) (mod I). (6)

Now define

• B = Tm-submodule of K generated by b(σ) for all σ ∈ GF along with Ap

Cp
, for all p ∈ R.

• B = B/IB.

Denote by b(σ) the image of b(σ) in B. Since ρ is a Galois representation, we have

b(σσ′) = a(σ)b(σ′) + b(σ)d(σ′) for all σ, σ′ ∈ GF .

The congruence (6) therefore implies that the function

κ(σ) = b(σ)ε−1(σ)χ−1(σ)

is a 1-cocycle defining a cohomology class [κ] ∈ H1(GF ,B(ε−1χ−1)).

Theorem 5.1. The class κ is unramified everywhere and locally trivial at primes above p.

Proof. The proof that κ is unramified at primes outside R is similar to [7, Lemma 4.7]

which also shows that κ is locally trivial at all primes in R′. To show that κ is unramified

at primes in R we use equation (5). By definition, Ap/Cp belongs to B for any p ∈ R
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and hence (Ap/Cp)I = 0 in B. For any σ in the decomposition subgroup at p, we have

a(σ) ≡ η−1
p (σ) ≡ 1 (mod I). Hence

κ(σ) = (1− χ−1ε−1(σ))(−Ap/Cp)

in B for all σ in the decomposition subgroup Gp. Therefore κ is locally trivial at all primes

in R.

Theorem 5.2. We have

FittE[[π]](B) ⊂ (πran).

In particular, dimE(B) ≥ ran.

Proof. The Tm-module B, being a submodule of K = Frac(Tm), is faithful. It follows

that FittTm(B) = 0. Therefore FittTm/I(B) = 0, whence FittE[[π]]/πran (B) = 0. The result

follows.

We present a second proof of the theorem that is a variant of the Fitting ideal computation

in [5, Theorem 9.10]. It uses a determinant introduced in [7, Section 5] and whose refinement

plays a crucial role in both [5, 6]. We first need a lemma.

Lemma 5.3. The module B0 = 〈b(σ) : σ ∈ GF 〉 is generated by finitely many elements

b1, . . . , bm that are nonzerodivisors in K.

Proof. The finite generation of B0 is easy because the homomorphism ρ is continuous and

hence B0 is compact. We must show that we can choose a generating set of nonzerodivisors.

Suppose we start with an arbitrary finite generating set b1, . . . , bm. We will modify these

generators to make each one a nonzerodivisor in K. We do this by induction on the total

number of zero projections of the bi onto the factors Ej of K. Suppose that bi has a zero

projection on some Ej. Since the representation ρfj is irreducible, some other bk has nonzero

projection onto Ej. If we replace bi by bi+tbkfor any nonzero t ∈ E, the new bi has a nonzero

projection onto Ej. Furthermore, at most finitely many t introduce a new zero projection of

bi onto some other Ej. Avoiding these finitely many t, we can choose a t that decreases the

total number of zeros. Furthermore, the replacement bi 7→ bi + tbk does not change the span

of the set {bi}, and hence preserves the property that they generate B0.

Second proof of Theorem 5.2. Let b1, . . . , bn be generators of B as given by Lemma 5.3 above

together with
Api

Cpi
for R = {p1, . . . , pr} (therefore n = m + r, with m as in Lemma 5.3).

Suppose we have a matrix

M ∈Mn×n(E[[π]])

such that each row of M represents a relation amongst our generators i.e. such that

M(b1, . . . , bn)t ≡ 0 in B
n
.
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By the definition of Fitting ideal, the theorem will follow if we can show that det(M) ∈ (πran).

Write M = (zij). As the bi’s generate B, every element of IB can be written as a sum of

elements of the form biti with ti ∈ I. Therefore each relation

n∑
j=1

zijbj ≡ 0 in B

can be expressed as an equality in B as

n∑
j=1

(zij + I)bj = 0.

We use the notation a = b+ I to mean a = b+z for some z ∈ I. We can cancel the factors bj
scaling the columns of M , since these are non-zerodivisors in K. We obtain that det(M ′) = 0

where

M ′ = (zij + I).

Taking the determinant of M ′ and applying ϕ, we obtain that

0 = ϕ(det(M ′)) = det(M)

in W . By Theorem 4.1, we obtain that det(M) ∈ (πran) as desired.

Theorem 2.3 now follows from Lemma 2.4, once we observe that κ has all the required

properties. Indeed, we have shown in Theorem 5.1 that κ is everywhere unramified and

locally trivial at all primes above p. Furthermore, if B0 denotes the image of B0 in B, then

B/B0 is generated over Tm/I ∼= E[π]/(πran) by the r elements
{
Ap

Cp
: p ∈ R

}
. We claim that

π acts trivially on B/B0 and thus
{
Ap

Cp
: p ∈ R

}
generates B/B0 as an E-vector space. Let

σ be an element in GF,p such that 〈εcyc(σ)〉 6= 1. Then we have

1− ε(σ) = π · unit

and equation (5) implies that

b(σ) =
Ap

Cp

(a(σ)− χ(σ)ε(σ)η−1
p (σ)) ≡ Ap

Cp

· (1− ε(σ)) (mod I).

Therefore Ap

Cp
· π ∈ B0 proving our claim.

Since dimE B/B0 ≤ r, Lemma 2.4 yields the desired inequality

dimE X
(χ)
(1) ≥ dimE B ≥ ran.
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