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Local and Global

local: 1: characterized by or relating to position in space: having a

definite spatial form or location

2(a): of, relating to, or characteristic of a particular place: not

general or widespread

(b): of, relating to, or applicable to part of a whole
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Local and Global

global: 1(a): of, relating to, or involving the entire world.

(b): of or relating to a spherical celestial body (such as the moon)

2: of, relating to, or applying to a whole (such as a mathematical

function or a computer program)



Example: Ants on a circle

Click here for animation of zooming in on a circle

https://services.math.duke.edu/~dasgupta/image/circlezoom.mov


Ants on a circle

This is a failure of drawing global inferences from local data.

Every ant thinks the circle is “flat.” Even if you talk to all the ants

at the same time, you can’t figure out the global information that

the circle loops back to itself.

The ants can’t tell the difference between a straight line and a

circle.
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Number Theory

Broadly speaking, number theory is motivated by two types of

questions:

1 What is the distribution of primes? (e.g. are there infinitely

many? how many are there less than 1,000,000? Are there

infinitely many twin primes?)

2 What are the integer solutions to polynomial equations? (e.g.

x2 + y2 = z2, xn + yn = zn).
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Real solutions

Real solutions are “easier.” Pythagorean eqn: x2 + y2 = z2



Integer solutions

But number theorists are interested in the integer (or rational)

solutions to equations.

Integers = Z, Rationals = Q

32 + 42 = 52

52 + 122 = 132

92 + 402 = 412

...



First Question — Are there any integer solutions?

Consider the equation x2 + y2 + 4 = 0.

There are no real solutions, since the left side is always positive, so

there are no integer solutions.
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Parity is x mod 2

Asking whether a number is odd or even is asking:

“When we divide the number by 2, is the remainder 0, or 1?”

More generally, given a positive integer n, we can define x

(mod n) to be the remainder when we divide x by n.
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Modular arithmetic

We define Z/n = {0, 1, 2, . . . , n − 1}, the set of possible

remainders when you divide by n.

We can consider solutions to equations in Z/n.

The equation y2 = x3 + 2 has the solution (x , y) = (3, 2) in Z/5,

since 22 ≡ 29 ≡ 4 (mod 5).
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Another example

x3 − x = y2 + 1

The left side is always 0 mod 3.

The right side is always 1 or 2 mod 3.

Since there are no solutions in Z/3, there are no solutions in Z.



Another example

z4 − z2 − 1 = x2 + y2

Left side is always 3 mod 4.

Right side is always 0, 1, or 2 mod 4.

Since there are no solutions in Z/4, there are no solutions in Z.



Local and Global in Number theory

Global means looking for solutions to an equation in Z or Q.

Local means looking for solutions in R or mod pm for every prime

p and integer m ≥ 1.

Local to Global principle: If a polynomial equation has solutions

in R and mod pm for all primes p and m ≥ 1, does it necessarily

have solutions in Z?



Hasse’s principle

A quadratic polynomial has solutions in Z if and only if it has

solutions in R and mod pm for every prime p and m ≥ 1.



Selmer’s famous example

However, Hasse’s principle does not hold once we pass the realm of

quadratic polynomials.

The equation 3x3 + 4y3 + 5z3 = 0 has nontrivial solutions in R and

mod pm for all primes p, m ≥ 1, but no nontrivial solutions in Z.
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When does a cubic equation have a rational solution?

There is an algorithm, called descent, which can determine if a

given cubic equation has a solution.

It is an open conjecture as to whether this algorithm always

terminates!

Proving that this algorithm terminates is a huge open problem in

number theory.
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Finding all solutions, if we know they exist

Quadratics: Pythagorean example, x2 + y2 = 1.

Start with the point (−1, 0).

Line with rational slope t

through this point:

y = t(x + 1).

It must intersect circle at

another rational point.

(x , y) = (1−t
2

1+t2
, 2t
1+t2

).



Integer solutions

If we write t = m/n, and scale through the denominator, we get a

paramaterization of all primitive integer solutions to x2 + y2 = z2:

(x , y , z) = (n2 −m2, 2mn, n2 + m2).



Elliptic Curves

A (nonsingular) cubic equation in two variables with at least one

rational solution is called an elliptic curve.

After a change of variables, these can always be written

y2 = x3 + bx + c .



Composition Law

If we start from a rational

point, and draw a line with

rational slope, the other two

points of intersection need not

be rational.

But if we start with two

rational points, then the third

point has to be rational.



A simpler way to get a new

rational point is to flip across

the x-axis.

We can keep doing this

procedure repeatedly—drawing

lines between two points we

have, taking the third point of

intersection, and flipping.



Mordell’s Theorem

All the rational points on the

curve can be obtain from this

process starting with only

finitely many.

The minimum number of

points you need, excluding the

“torsion points”, is called the

rank r .



Studying the rank

Intuitively, the bigger r is, the more rational points there are on

the curve.

For a given curve, can we figure out r?

In the 1960s, Birch and Swinnerton-Dyer explored whether there is

a local-to-global principle at work here.
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Birch–Swinnerton-Dyer conjecture

For each prime p, let Np be the number of solutions to the

equation of the curve mod p.

For example, for y2 = x3 + 1 and p = 5, we have the points

(0, 1), (0, 4), (2, 2), (2, 3), (4, 0),∞, so Np = 6.

Birch and Swinnerton–Dyer found that∏
p≤x

Np

p

grew faster as a function of x , the larger r was.
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Birch–Swinnerton-Dyer conjecture

More precisely, they conjectured∏
p≤x

Np

p
∼ C (log x)r

for some non-zero constant C , where r is the rank of the curve.

This is one of the most important unsolved problems in all of

mathematics.
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The Unit equation

Consider the equation:

xy − 1 = 0.

Then Np = number of solutions mod p is equal to p − 1.

∏
p≤x

Np

p
=
∏
p≤x

p − 1

p
=
∏
p≤x

(
1− 1

p

)
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Geometric Series

Let’s consider the inverse of this:∏
p≤x

1

1− 1/p
.

Using
1

1− r
= 1 + r + r2 + r3 + · · · ,

we get ∏
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Unique Factorization

(
1 +

1

2
+

1

22
+ · · ·

)(
1 +

1

3
+

1

32
+ · · ·

)(
1 +

1

5
+

1

52
+ · · ·

)
=

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

8
+

1

9
+ · · · =

the sum of 1/n for all n whose prime factors are 2, 3, 5.



In the limit

If we send x →∞, then we get

∏
p prime

1

1− 1/p
=
∞∑
n=1

1

n
=∞.

From this it follows there are infinitely many primes.

(This was Euler’s proof.)
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Riemann Zeta Function

Riemann realized that you should study, more generally,

ζ(s) =
∏

p prime

1

1− 1/ps
=
∞∑
n=1

1

ns

where s is a complex number.

That sum only converges for s with real part > 1, but Riemann

showed how to define it for all s.
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Some special values

ζ(2) = 1 +
1

4
+

1

9
+

1

16
+ · · · =

π2

6
.

ζ(4) = 1 +
1

24
+

1

34
+

1

44
+ · · · =

π4

90
.

ζ(2k) = 1 +
1

22k
+

1

32k
+

1

42k
+ · · · = Ck · π2k ,

where Ck is a rational number related to Bernoulli Numbers.



The Riemann Hypothesis

Conjecture. Other than ζ(−2k) = 0 for k > 0 an integer, we can

only have ζ(s) = 0 if the real part of s is 1/2.



The Birch–Swinnerton-Dyer conjecture, revisited

Theorem (Hasse)

For any elliptic curve E and any prime p, the integer

ap = p + 1− Np satisfies |ap| < 2
√
p.

B-SD product ∏
p

Np

p
=
∏
p

1− ap + p

p
.

Introduce s variable:

L(E , s) =
∏
p

1

1− app−s + p1−2s
.

Intuitively,

L(E , 1) =

(∏
p

Np

p

)−1
.



The Birch–Swinnerton-Dyer conjecture, revisited

Theorem (Hasse)

For any elliptic curve E and any prime p, the integer

ap = p + 1− Np satisfies |ap| < 2
√
p.

B-SD product ∏
p

Np

p
=
∏
p

1− ap + p

p
.

Introduce s variable:

L(E , s) =
∏
p

1

1− app−s + p1−2s
.

Intuitively,

L(E , 1) =

(∏
p

Np

p

)−1
.



The Birch–Swinnerton-Dyer conjecture, revisited

Theorem (Hasse)

For any elliptic curve E and any prime p, the integer

ap = p + 1− Np satisfies |ap| < 2
√
p.

B-SD product ∏
p

Np

p
=
∏
p

1− ap + p

p
.

Introduce s variable:

L(E , s) =
∏
p

1

1− app−s + p1−2s
.

Intuitively,

L(E , 1) =

(∏
p

Np

p

)−1
.



The Birch–Swinnerton-Dyer conjecture, revisited

Theorem (Hasse)

For any elliptic curve E and any prime p, the integer

ap = p + 1− Np satisfies |ap| < 2
√
p.

B-SD product ∏
p

Np

p
=
∏
p

1− ap + p

p
.

Introduce s variable:

L(E , s) =
∏
p

1

1− app−s + p1−2s
.

Intuitively,

L(E , 1) =

(∏
p

Np

p

)−1
.



The Birch–Swinnerton-Dyer conjecture, revisited

Conjecture

E has infinitely many rational solutions (i.e. r > 1) if and only if

L(E , 1) = 0.

More generally,

ords=1L(E , s) = r .


