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CLASS FIELD THEORY

Class field theory describes the Galois group of the maximal 

abelian extension of a number field . F

Gal(Fab/F) ≅ A*F /F*F>0
∞

The right hand side uses information intrinsic to only  itself. 
 

Explicit class field theory asks for the construction of the field 
, again using only information intrinsic to .

F

Fab F
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KRONECKER-WEBER THEOREM

Let .   

Class field theory:  

F = Q

Gal(Qab/Q) ≅ Ẑ* ≅ ∏
p

Z*p

Explicit class field theory: (Kronecker-Weber) 

Qab =
∞

⋃
n=1

Q(e2πi/n)



COMPLEX MULTIPLICATION
Quadratic imaginary fields. 

                 F = Q( −d), d =  positive integer .

4

Here  is the 

usual modular function.  For , modular 

functions play the role of the exponential function for .

j(q) = q−1 + 744 + 196884q + 2149360q2 + ⋯
F = Q( −d)

F = Q

Theorem.   where  is an elliptic 

curve with complex multiplication by  and 

“Weber function.”

Fn = F( j(E), w(E[n])) E
𝒪F

w =



HILBERT’S 12TH PROBLEM (1900)

“The theorem that every abelian number field arises from the realm of 
rational numbers by the composition of fields of roots of unity is due to 
Kronecker.” 

“Since the realm of the imaginary quadratic number fields is the simplest 
after the realm of rational numbers, the problem arises, to extend 
Kronecker’s theorem to this case.” 

“Finally, the extension of Kronecker’s theorem to the case that, in the 
place of the realm of rational numbers or of the imaginary quadratic field, 
any algebraic field whatever is laid down as the realm of rationality, seems 
to me of the greatest importance.  I regard this problem as one of the most 
profound and far-reaching in the theory of numbers and of functions.”
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APPROACHES USING L-FUNCTIONS
➤ Stark stated a series of conjectures proposing the existence of elements 

in abelian extensions  whose absolute values are related to 

 (1971-80). 

➤ Tate made Stark’s conjectures more precise and stated the  
Brumer-Stark conjecture. (1981) 

➤ Gross refined the Brumer-Stark conjecture using -adic  
This is called the Gross-Stark conjecture (1981). 

➤ Rubin (1996), Burns (2007), and Popescu (2011) made the higher rank 
version of Stark’s conjectures more precise. 

➤ Burns, Popescu, and Greither made partial progress on Brumer-Stark 
building on work of Wiles.

H/F
L-functions

p L-functions.
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THE BRUMER-STARK AND GROSS-STARK CONJECTURES

Let  be a totally real number field. Let  be a finite CM 

abelian extension .

F H
F
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➤ The Gross-Stark conjecture predicts that these units are 

related to -adic  of  in a specific way.p L-functions F

➤ The Brumer-Stark conjecture predicts the existence of 

certain elements  called Brumer-Stark units that 

are related to  of  in a specific way.

u ∈ H*
L-functions F



SOME OF MY PRIOR WORK IN THIS AREA

Stated a conjectural exact formula for Brumer-Stark units in 
several joint works, with:

Henri Darmon Pierre Charollois Matthew Greenberg Michael Spiess



SOME OF MY PRIOR WORK IN THIS AREA
Proved the Gross-Stark conjecture*  

in joint works with: 
Benedict Gross

Henri Darmon Robert Pollack Kevin VentulloMahesh Kakde



NEW RESULTS* (WITH MAHESH KAKDE)

Theorem 1. The Brumer-Stark conjecture holds if we invert 2 
(i.e. up to a bounded power of 2). 

Theorem 2. My conjectural exact formula for Brumer-Stark 
units holds, up to a bounded root of unity.
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P-ADIC SOLUTION TO HILBERT’S 12TH PROBLEM

Hilbert’s 12th problem is viewed as asking for the construction 

of the field  using analytic functions depending only on .Fab F

11

Therefore the proof of this conjecture can be viewed as a  
solution to Hilbert’s 12th problem.

p-adic

Our exact formula expresses the Brumer-Stark units as 

integrals of analytic functions depending only on .

p-adic

F

The Brumer-Stark units, together with other explicit and easy to 

describe elements, generate the field .Fab



12Technical remark: For this formulation, must assume at least 3 archimedean or ramified places of .F

STARK’S CONJECTURE

Conjecture (Stark 1971-80).   

There exists  such that  for every place 

 and for every character  of ,  

                         . 

Furthermore,  is an abelian extension of . 

u ∈ H* |u |w = 1
w ∤ v χ G

L′ S(χ,0) = −
1
e ∑

σ∈G

χ(σ)log |u |σ−1w

H(u1/e) F

 = finite abelian ext of number fields,  

 = place of  that splits completely in  

 = a set of places of  containing the infinite places, ramified places, and . 

.

H/F G = Gal(H/F) .

v F H .

S F v

e = #μ(H)



INSIDE THE ABSOLUTE VALUE
Stark’s formula can be manipulated to calculate  under 

each embedding . 

Can one refine this and propose a formula for  itself?

|u |

H ↪ C
u
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The presence of the absolute value represents a gap between 
Stark’s Conjecture and Hilbert’s 12th problem—if we had an 

analytic formula for , this would give a way of constructing 

canonical nontrivial elements of .

u
H

 

There are interesting conjectures in this direction by Ren-Sczech 
and Charollois-Darmon.



THE BRUMER-STARK CONJECTURE

Conjecture (Tate-Brumer-Stark). 

There exists  such that  under each 

embedding , 

                

for all characters  of , and . 

u ∈ 𝒪H[1/𝔭]* |u | = 1
H ↪ C

LS(χ,0)(1 − χ(σ𝔮)N𝔮) = ∑
σ∈G

χ−1(σ) ord𝔓(σ(u))

χ G u ≡ 1 (mod 𝔮𝒪H)

14

Fix primes ,   above .  

 = {infinite places, ramified places}.

𝔭, 𝔮 ⊂ 𝒪F 𝔓 ⊂ 𝒪H 𝔭

S
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John Tate

Armand Brumer

Harold Stark

Ludwig Stickelberger



RESULTS

Theorem (D-Kakde). There exists 

                             
satisfying the conditions of the Brumer-Stark conjecture.

u ∈ 𝒪H[1/𝔭]* ⊗ Z[1/2]

16

There is a “higher rank” version of the Brumer-Stark conjecture 
due to Karl Rubin.  We obtain this result as well, after tensoring 

with Z[1/2] .



GROUP RINGS AND STICKELBERGER ELEMENTS

Theorem. (Deligne-Ribet, Cassou-Noguès) 

There is a unique  such that 
 

                       
 

for all characters  of .

Θ ∈ Z[G]

χ(Θ) = LS(χ−1,0)(1 − χ−1(σ𝔮)N𝔮)

χ G
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CLASS GROUP

Define 

                                                                                                                                                        . 
 

This is a -module.

Cl𝔮(H) = I(H)/⟨(u) : u ≡ 1 (mod 𝔮𝒪H)⟩

G

18

For this, it suffices to prove 
 

                              
 

for all primes .

Θ ∈ AnnZp[G](Cl𝔮(H) ⊗ Zp)

p

Brumer-Stark states:  annihilates Θ Cl𝔮(H) .



STRONG BRUMER-STARK

Theorem. For odd primes , we have 
 

                                                                                                                                                   

                     . 

p

Θ ∈ FittZp[G](Cl𝔮(H)∨,−)

FittZp[G](Cl𝔮(H)∨,−) ⊂ AnnZp[G](Cl𝔮(H)−)

19
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REFINEMENTS: CONJECTURES OF KURIHARA AND BURNS

  FittZp[G](Cl𝔮(H)∨,−) = ΘS∞ ∏
v∈Sram

(NIv, 1 − σ−1
v ev)

Theorem. For odd primes , we havep

Theorem. For odd primes , we havep

  FittZp[G](Sel𝔮S(H)−
p ) = (ΘS)



RIBET’S METHOD

Eisenstein Series

Cusp Forms Galois 
Representations

 Galois Cohomology 
Classes

Class GroupsL-functions
?

 (DIAGRAM H/T BARRY MAZUR)



GROUP RING VALUED MODULAR FORMS

 
Example: Eisenstein Series. 

                      E1(G) =
1
2d

Θ + ∑
𝔪⊂𝒪

∑
𝔞⊃𝔪,(𝔞,S)=1

σ𝔞 q𝔪
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This must be modified in level 1.

Hilbert modular forms over  of weight  with 

Fourier coefficients in  such that for every 

character  of , applying  yields a form of nebentype .

Mk(G) = F k
Zp[G]

χ G χ χ



GROUP RING CUSP FORM

Choose ,  where  away from trivial zeroes.   

.

Vk ≡ 1 (mod pN) Θ ∣ pN

f ≡ E1(G) (mod Θ)

23

  

 

is cuspidal at infinity, where  and  have constant term 1.

f = E1(G)Vk −
Θ
2d

Hk+1(G)

Vk Hk+1(G)

The existence of  and  are non-trivial theorems of 
Silliman, generalizing results of Hida and Chai. 

This can be modified to yield a cusp form  satisfying   .

Vk Hk+1(G)

f f ≡ E



GALOIS REPRESENTATION

We hereafter assume that  is an eigenform. 

The Galois representation associated to  can be chosen as: 

                       

where ,   . 

This is because  and 

                                   

Let 

f

f

ρf(σ) = (a(σ) b(σ)
c(σ) d(σ)) ∈ GL2(Qp[G])

a(σ) ≡ 1 (mod Θ) d(σ) ≡ [σ] (mod Θ)

f ≡ E1(G) (mod Θ)

aℓ(E1(G)) = 1 + [σℓ] .

B = Zp[G]⟨b(σ) : σ ∈ GF⟩
24



COHOMOLOGY CLASS
Then  implies 

                ,   hence 

                     

b(στ) = a(σ)b(τ) + b(σ)d(τ)

b(στ) ≡ b(τ) + [τ]b(σ) (mod Θ)

κ(σ) = [σ]−1b(σ) ∈ H1(GF, B/ΘB) .

25

The class  is unramified outside the level and  since is.  

Problem: In general,  is not unramified at . 

To deal with this in the proof of IMC, Wiles invented “horizontal 
Iwasawa theory,” which led to the Taylor-Wiles method.

κ p ρf

κ p

Issue: In our context, this method meets with 
obstacles that appear insurmountable.



SPLITTING FIELD  (CASE H/F UNRAMIFIED)

Pretend that  is unramified at  The splitting field of  is an 

extension of  whose Galois group is a quotient of : 

                                  

κ p . κ
H Cl𝔮(H)

Cl𝔮(H)− ↠ B/ΘB

Hence 

                        

since  is a faithful -module. 

An analytic argument shows that this  is an .

Fitt(Cl𝔮(H)−) ⊂ Fitt(B/ΘB) ⊂ (Θ)

B Zp[G]

⊂ =
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GENERAL CASE

The previous slides works for  unramified, and can be modified 

when  is ramified only at primes not above   

Key idea: move ramified primes to smoothing set. 

When there is ramification at , the situation is more complicated. 

A Selmer module replaces . 

It is endowed with a surjective map to .

H/F
H/F p .

p

Cl𝔮(H)−

Cl𝔮(H)∨,−

27



GETTING A CLASS UNRAMIFIED AT P

Step 1: There is a non-zero divisor  such that we can 

construct a “higher congruence”:

x ∈ Zp[G]

28

f ≡ E1(G) (mod xΘ)

•  measures “trivial zeroes at .” 

• Requires detailed construction of cusp form. 

• Calculation of constant terms of Eisenstein series at  
 all cusps.

x p



GETTING A CLASS UNRAMIFIED AT P
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Step 2: Define

 is now tautologically unramified at .κ p

B′ = ⟨b(σ) : σ ∈ I𝔭, 𝔭 ∣ p⟩ ⊂ B

κ(σ) = [σ]−1b(σ) ∈ H1(GF, B)

B = B/(xΘB, B′ )

Cl𝔮(H)− ↠ B

Fitt(Cl𝔮(H)−) ⊂ Fitt(B)



FITTING IDEAL OF B

Step 3: A miracle: 

so 

as before.

30

Fitt(B) ⋅ (x) ⊂ Fitt(B/xΘB) ⊂ (xΘ)

Fitt(Cl𝔮(H)−) ⊂ Fitt(B) ⊂ (Θ)



EXACT FORMULA FOR THE UNITS

Our conjectural exact formula for  is given by a -adic integral. 

Suppose :

u p

𝔭 = (p)

31

Shintani’s method, topological polylogarithm (Beilinson-Kings-
Levin), Sczech’s method, …

Conjecture.  We have 

  

where  is a measure defined using the Eisenstein cocycle.

u = pζ(0) ×∫𝒪*p

x dμ(x)

μ



COMPUTATIONAL EXAMPLE

This formula for Brumer-Stark units is explicitly computable.

Computing  and its conjugates to a high  precision, we 
obtain a polynomial very close to: 

 

The splitting field of this polynomial is indeed .

u p-adic

81x4 −
9 D + 345

2
x3 +

15 D + 419
2

x2 −
9 D + 345

2
x + 81.

H

Example. ,    . 

narrow Hilbert class field.  .

F = Q( 305) 𝒪 = Z [ 1 + 305
2 ]

H = p = 3



A LARGER EXAMPLE

 

To a high  precision,  is a root of: 

 

Again, the splitting field of this polynomial is narrow HCF.

F = Q( 473), p = 5.

p-adic u

510x6 +
−253125 D − 4501875

2
x5

+
496125 D + 5836125

2
x4 +

−59535 D − 13546883
2

x3+

496125 D + 5836125
2

x2 +
−253125 D − 4501875

2
x + 510 .

H =
33



HILBERT’S 12TH PROBLEM

If  is a cyclic CM extension of  in which  splits completely, 

then the Brumer-Stark unit  for  can be shown to generate . 

It follows that if , where the  

are elements of  whose signs in  are a basis for this 

-vector space, then 

.

H F 𝔭
u H H

S = {u}𝔭,H ∪ { α1, ⋯, αn−1} αi

F* {±1}n

Z/2Z

Fab = F(S)
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PROOF OF CONJECTURAL EXACT FORMULA

Uses group ring valued modular forms, as in the proof of 
Brumer-Stark.  

35

➤ The Taylor-Wiles method of introducing auxiliary primes: 
“horizontal Iwasawa theory.”

New features: 

➤ An integral version of Gross-Stark due to Gross and 

Popescu, and its relationship to the -adic integral formula.p



Thank you!
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