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Abstract

This is an exposition of our joint work with Kakde, Silliman, and Wang, in which we
prove a version of Ribet’s Lemma for GL2 in the residually indistinguishable case. We
suppose we are given a Galois representation taking values in the total ring of fractions
of a complete reduced Noetherian local ring T, such that the characteristic polynomial
of the representation is reducible modulo some ideal I ⊂ T. We assume that the two
characters that arise are congruent modulo the maximal ideal of T. We construct an
associated Galois cohomology class valued in a T-module that is “large” in the sense
that its Fitting ideal is contained in I. We make some simplifying assumptions that
streamline the exposition—we assume the two characters are actually equal, and we
ignore the local conditions needed in arithmetic applications.
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1 Introduction

In 1970, Ribet proved the converse of Herbrand’s Theorem [13]. When I learned about this in

graduate school, Dick Gross recalled to me that the methods introduced by Ribet “were like

a thunderbolt” in the number theory community at the time. Over 50 years later, Ribet’s

method remains a central force in algebraic number theory, particularly in Iwasawa Theory.

Perhaps the seminal work on the topic is the beautiful book of Joel Belläıche and Gaetan

Chenevier [2]. This book presents a very general form of Ribet’s approach and also describes

deep arithmetic applications. An introduction written for a more general audience is given

by Mazur [10].

The goal of Ribet’s method is to construct a nontrivial Galois cohomology class from the

knowledge that an L-function is appropriately divisible. Typically, we will be given a special

value of an L-function, which we denote by L, lying in a ring T (e.g. T = Zp or T = Zp[[T ]]),

and we assume assume that L lies in some ideal I ⊂ T. The value L will be associated to

two (or more) representations of the Galois group of a number field F over R, say ρ1 and ρ2.

One then wants to construct a nontrivial class in

H1(GF , ρ1 ⊗ ρ∗2),

where ρ∗2 is the dual of ρ2 and ρi denotes the reduction of ρi modulo I. In Ribet’s original

setting, he had T = Zp, I = (p), and ρ1, ρ2 one dimensional characters of GQ. Specifically,

ρ1 was the trivial character and ρ2 a nontrivial character of Gal(Q(µp)/Q).

To produce an extension, Ribet constructed a cusp form congruent to the Eisenstein

series associated to ρ1 and ρ2. In his case, one can show that the cusp form is an eigenform.

One therefore obtains a representation

ρ : GQ −→ GL2(K),
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where K is a finite extension of Qp, such that

tr(ρ) ≡ ρ1 + ρ2, det(ρ) ≡ ρ1ρ2 (mod I). (1)

The representation ρ can be conjugated to land in GL2(OK), and the Brauer–Nesbitt Theo-

rem implies that one can choose a basis so that the reduction of ρ modulo the maximal ideal

mK ⊂ OK has the form

ρ =

(
ρ1 ∗
0 ρ2

)
.

Ribet then proves an important lemma which shows that the basis can be chosen so that the

image of ∗ in OK/mK defines a non-trivial class in H1(GF , ρ1 ⊗ ρ−12 ). Furthermore, Ribet

proves certain local conditions satisfied by this non-trivial class. It is elementary class field

theory to prove that the existence of this class implies the converse to Herbrand’s Theorem.

We state Ribet’s Lemma formally as follows.

Theorem 1.1 (Ribet’s Lemma, Version 1). Let T be a complete DVR, and let m denote

its maximal ideal. Let G be a compact group. Suppose we are given a continuous irreducible

representation

ρ : G −→ GL2(K), K = Frac(T),

such that

char(ρ(g)) ≡ (x− χ1(g))(x− χ2(g)) (mod m) (2)

for two characters χ1, χ2 : G −→ T∗. Then there exists a non-zero cohomology class

κ ∈ H1(G,T/m(χ−12 χ1)).

In more general settings, such as that employed by Mazur–Wiles [11] and Wiles [15] in

their study of the Iwasawa Main Conjecture, the ring T cannot be assumed to be a DVR.

It will usually be a complete local Noetherian ring, perhaps reduced. An example of such a

ring that is not a DVR is

T = {(a, b) ∈ Zp × Zp : a ≡ b (mod p)}.

This example corresponds to two eigenforms with Hecke eigenvalues in Zp that are congruent

to each other modulo p. The total ring of fractions of T is K = Frac(T) = Qp ×Qp.

In addition, the ideal I ⊂ T modulo which the characteristic polynomial of ρ factors will

in general not be the maximal ideal of T. One then wants to construct a cohomology class

that generates a module that (in a sense we will make precise in a moment) is “as large as”

T/I. The first version of Ribet’s Lemma that applies in this case was proven by Mazur–Wiles

and Wiles. Their work was groundbreaking and had a profound impact, leading to Wiles’

theory of pseudorepresentations. In the statement below, a cohomology class κ valued in a

T-module M is called surjective if the image of every representative cocycle generates M as

a T-module.
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Theorem 1.2 (Ribet’s Lemma, Version 2). Let T be a complete reduced local Noetherian

ring, and let m denote its maximal ideal. Let G be a compact group. Suppose we are given a

continuous representation

ρ : G −→ GL2(K), K = Frac(T),

such that for any projection onto a field K → k, the projection of ρ to a representation

G → GL2(k) is irreducible. Let I ⊂ T be a proper ideal. Suppose that

char(ρ(g)) ≡ (x− χ1(g))(x− χ2(g)) (mod I) (3)

for two characters χ1, χ2 : G −→ T∗ satisfying χ1 6≡ χ2 (mod m). Then there exists a

fractional ideal of T, B ⊂ K, and a surjective cohomology class

κ ∈ H1(G,B/IB(χ−12 χ1)).

The assumption χ1 6≡ χ2 (mod m) is essential in Wiles’ approach to Theorem 1.2, and it

has important consequences. In the Main Conjecture of Iwasawa Theory, one has χ1 equal

to the trivial character and χ2 equal to a totally odd character of a totally real field. Let

c denote complex conjugation. When p 6= 2, we have χ1(c) = 1 6≡ −1 = χ2(c) (mod p).

However when p = 2 we may have χ1 ≡ χ2 (mod p), and Theorem 1.2 cannot be applied.

This is the main reason that Wiles sets p 6= 2 in his proof of the Main Conjecture.

The purpose of this exposition is to describe the main theorem of our paper [6], joint with

Mahesh Kakde, Jesse Silliman, and Jiuya Wang, in which we establish a version of Ribet’s

Lemma that holds even if χ1 ≡ χ2 (mod m). Here we describe the proof of the following

result, a simplified form of Theorem 2.1 of loc. cit.

Theorem 1.3 (Ribet’s Lemma, Version 3). Let T be a complete reduced local Noetherian

ring, and let m denote its maximal ideal. Let G be a compact group. Suppose we are given a

continuous representation

ρ : G −→ GL2(K), K = Frac(T),

such that for any projection onto a field K → k, the projection of ρ to a representation

G → GL2(k) is irreducible. Let I ⊂ T be a proper ideal. Suppose that

char(ρ(g)) ≡ (x− χ1(g))(x− χ2(g)) (mod I) (4)

for two characters χ1, χ2 : G −→ T∗. Then there exists a finitely generated T-module M and

a surjective cohomology class

κ ∈ H1(G,M(χ−12 χ1))

such that

FittT(M) ⊂ I.
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The ideal FittT(M) is the 0th Fitting ideal of the module M , which will be defined in

§4.1. Intuitively, the inclusion FittT(M) ⊂ I says that M is “large.”

In [5], we prove the Brumer–Stark conjecture at p = 2 using a suitably generalized

version of Theorem 1.3. Previously, we proved the conjecture over Z[1/2] in [4], with the

prime p = 2 being avoided for reasons of residual distinguishability. We hope that further

strengthenings of Theorem 1.3 (for example, to groups other than GL2) could have other

arithmetic applications.

In this paper, we simplify notation by setting χ1 and χ2 to be the trivial character;

the case of general χ1, χ2 requires no extra ideas, but the notation is heavier. A more

significant change in this paper relative to [6] is that all the versions of Ribet’s method

stated above do not include local conditions on the cohomology classes constructed. In

arithmetic applications, ranging from Ribet’s original proof of the converse to Herbrand’s

theorem to our proof of the Brumer–Stark conjecture, local conditions are always necessary.

To prove the local properties we need in the Brumer–Stark context, the argument presented

here is generalized in [6] using the Buchsbaum–Rim resolution of determinantal ideals; in

this paper, the simple Koszul complex suffices. In loc. cit. we also give a mild generalization

to certain non-reduced Hecke algebras T.

It is an honor to contribute this article to the memorial volume for Joël Belläıche. Joël

was a wonderful collaborator and dear friend. We discussed the residually indistinguishable

case of Ribet’s Lemma in 2010, at which time both of us felt the problem was intractable.

It is a great sadness that I cannot share this result with my colleague who perhaps would

have appreciated it the most.

2 The DVR case

In this section we prove Theorem 1.1, Ribet’s original setting. Let T be a complete DVR

and let m denote its maximal ideal. Let G be a compact group. We are given a continuous

irreducible representation

ρ : G −→ GL2(K), K = Frac(T),

such that

char(ρ(g)) ≡ (x− χ1(g))(x− χ2(g)) (mod m) (5)

for two characters χ1, χ2 : G −→ T∗.

Lemma 2.1. The representation ρ may be conjugated to have image contained in GL2(T),

and such that the reduction ρ has the shape

ρ =

(
χ1 ∗
0 χ2

)
.
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Proof. The maximal compact subgroups of GL2(K) are precisely the conjugates of GL2(T).

Since G is compact and ρ is continuous, it follows ρ that may be conjugated to have image

contained in GL2(T). Now (5) states that

char(ρ(g)) = (x− χ1(g))(x− χ2(g)) in T/m. (6)

The Brauer–Nesbitt Theorem [3] states that if two representations over a field have the

same characteristic polynomial, then their semisimplifications are isomorphic. Therefore,

(6) implies that ρss ∼= χ1 ⊕ χ2. Hence we have either

ρ ∼=
(
χ1 ∗
0 χ2

)
or ρ ∼=

(
χ2 ∗
0 χ1

)
. (7)

It is a pleasant exercise to prove (7) directly from (6) without reference to the full strength

of the Brauer–Nesbitt Theorem. Now, suppose we are in the second case. Then we can

conjugate ρ by the matrix

(
π 0
0 1

)
, where π is a uniformizer of T, to obtain

ρ ∼=
(
χ2 0
∗ χ1

)
∼=
(
χ1 ∗
0 χ2

)
as desired.

Lemma 2.2. Suppose that the representation ρ has been conjugated so that its image lands

in GL2(T) and

ρ =

(
χ1 b
0 χ2

)
.

Then the function κ(σ) = χ−12 (σ)b(σ) is a 1-cocycle in Z1(G,T/m(χ−12 χ1)).

Proof. Since ρ is a matrix representation, we have

b(στ) = χ1(σ)b(τ) + b(σ)χ2(τ).

Multiplying by χ−12 (στ) gives the desired 1-cocycle formula for κ = χ−12 b.

What remains to prove Theorem 1.1 is to show that after conjugating ρ further, we can

arrange for the cohomology class represented by κ to be non-trivial.

Proof of Theorem 1.1. In his 2008 lectures from the Clay Summer School in Hawaii, Belläıche

gives a beautiful and conceptual proof of the fact that ρ can be chosen so that the cohomology

class represented by κ is non-trivial [1, Proposition 1.4]. He attributes this proof to Serre.

Here, we take the more computational approach applied by Ribet.

Since we will be applying a recursive process, let ρ1 = ρ and write

ρ1(σ) =

(
a1(σ) b1(σ)
c1(σ) d1(σ

)
∈ GL2(T).
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If π denotes a uniformizer of K = Frac(T), then we have

a1(σ) ≡ χ1(σ) (mod π), (8)

c1(σ) ≡ 0 (mod π), (9)

d1(σ) ≡ χ2(σ) (mod π) (10)

for all σ ∈ G. Denote the cocycle constructed in Lemma 2.2 by κ1.

Suppose that κ1 represents a trivial cohomology class; then there exists x1 ∈ T such that

κ1(σ) ≡ (χ−12 χ1(σ)− 1)x1 (mod π)

for all σ ∈ G, or equivalently,

b1(σ) ≡ (χ1(σ)− χ2(σ))x1 (mod π). (11)

Conjugating the representation ρ1, we define

ρ2(σ) =

(
a2(σ) b2(σ)
c2(σ) d2(σ)

)
=

(
1 x1
0 π

)
ρ1(σ)

(
1 x1
0 π

)−1
.

Using the congruences (8)–(11), we find that ρ2(σ) ∈ GL2(T) and furthermore that

a2(σ) ≡ χ1(σ) (mod π),

c2(σ) ≡ 0 (mod π2),

d2(σ) ≡ χ2(σ) (mod π).

We are therefore once again in the setting of Lemma 2.2 and obtain a cocycle

κ2(σ) = χ−12 (σ)b2(σ) ∈ Z1(G,T/m(χ−12 χ1)).

If κ2 represents a nontrivial cohomology class, we are done. If not, we may repeat this

process and obtain another representation ρ3, where now π3 | c3(σ). This process continues.

If at any stage, we obtain a cocycle κi that represents a non-trivial class, then we are done.

If the process continues forever, then one checks that by defining x = x1 + πx2 + π2x3 + · · · ,

conjugating the original representation ρ1 by

(
1 x
0 1

)
leaves a representation over K with a

0 in the upper right-hand corner. This contradicts the irreducibility of ρ1.

3 The Residually Distinguishable Case

In this section, we prove Theorem 1.2. Our complete local ring T is no longer assumed to

be a DVR, but we grant ourselves the assumption χ1 6≡ χ2 (mod m). Fix τ ∈ G such that
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χ1(τ) 6≡ χ2(τ) (mod m). By Hensel’s Lemma, the congruence (3) implies that ρ(τ) has two

distinct eigenvalues λ1, λ2 ∈ T such that

λi ≡ χi(τ) (mod I) (12)

for i = 1, 2. We choose a basis for ρ over K = Frac(T) such that

ρ(τ) =

(
λ1 0
0 λ2

)
.

For σ ∈ G, write

ρ(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
.

Note that unlike the DVR case, we cannot ensure that ρ takes values in GL2(T), only

GL2(K). Nevertheless, we have the following.

Lemma 3.1. We have a(σ), d(σ) ∈ T for all σ ∈ G, and furthermore

a(σ) ≡ χ1(σ) (mod I),

d(σ) ≡ χ2(σ) (mod I).

Proof. The congruence (3) implies that

a(σ) + d(σ) ≡ χ1(σ) + χ2(σ) (mod I). (13)

Applying this with σ replaced by στ , and noting that a(στ) = a(σ)λ1 and d(στ) = d(σ)λ2
by our choice of basis, we obtain

a(σ)λ1 + d(σ)λ2 ≡ χ1(σ)χ1(τ) + χ2(σ)χ2(τ). (mod I) (14)

Solving the congruences (13) and (14) using (12), we find that a(σ), d(σ) ∈ T and furthermore

a(σ) ≡ χ1(σ) (mod I) and d(σ) ≡ χ2(σ) (mod I) as desired. Note that this uses the fact

that χ1(τ) 6≡ χ2(τ) (mod m) in a crucial way.

We now let B denote the T-submodule of K spanned by the b(σ) for σ ∈ G. Note that

the irreducibility assumption on ρ implies that B is a fractional ideal of T. Indeed, if we

write K as a product of fields, then the projection of ρ on to each field factor is irreducible,

hence the projection of B onto each field factor is nonzero.

In view of the congruences of Lemma 3.1, the equation

b(σσ′) = a(σ)b(σ′) + b(σ)d(σ′)

yields

b(σσ′) ≡ χ1(σ)b(σ′) + χ2(σ
′)b(σ) in B/IB.
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As in Lemma 2.2, multiplying by χ−12 (σσ′) shows that

κ(σ) = χ−12 (σ)b(σ) ∈ B/IB

defines an element of Z1(G, B/IB(χ−12 χ1)).

It remains to prove that the cohomology class represented by κ is surjective. Therefore

let

κ′(σ) = κ(σ) + (χ−12 χ1(σ)− 1)x (15)

be a cohomologous cocycle, where x ∈ B/IB. Let B′ denote the T-submodule of B/IB

generated by the values of κ′. Applying (15) to τ and recalling that κ(τ) = 0, we see that

κ′(τ) = (χ−12 χ1(τ)− 1)x ∈ B′.

Since the item in parentheses in a unit in T by assumption, we find that x ∈ B′. Going

back to (15), it follows that κ(σ) ∈ B′ for all σ ∈ G. But it is clear from the definitions of

B and κ that κ generates B/IB, whence B′ = B/IB as desired. This completes the proof

of Theorem 1.2.

4 The Residually Indistinguishable Case

In the remainder of the paper we describe the proof of Theorem 1.3. Before explaining

the definition of the Fitting ideal that appears in the statement of the theorem, we remark

that the methods of the previous sections are not directly applicable—in the DVR case,

manipulations with the uniformizer π were essential, and in the residually distinguishable

case, the basis for ρ afforded by the special element τ was critical. Indeed, in the residually

indistinguishable case we do not know how to show that a(σ), d(σ) ∈ T (let alone that the

congruences of Lemma 3.1 hold) in any basis. A separate construction and proof is required.

As mentioned in the introduction, we will assume for the rest of the paper that χ1 and χ2

are trivial; this offers notational simplifications, but no significant changes to the argument.

4.1 Fitting Ideal

Let R be a commutative ring. Let M be a finitely presented R-module. This means that

there is a short exact sequence

Rn Rm M 0.
f

Definition 4.1. The 0th Fitting ideal of M over R, which we denote FittR(M), is the

ideal of R generated by all m ×m minors of the matrix representing the linear map f . By

convention, if n < m, then FittR(M) = 0.
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We leave the proof of the following basic facts about Fitting ideals as an exercise for the

reader (alternatively, she may consult [12]).

Proposition 4.2. We have the following.

• The Fitting ideal FittR(M) depends only on M up to R-module isomorphism, and not

on the particular presentation taken.

• If I ⊂ R is a finitely generated ideal, then FittR(R/I) = I.

• The Fitting ideal of M is contained in the annihilator of M : FittR(M) ⊂ AnnR(M).

• If R = Z and M is a finitely generated abelian group, then FittZ(M) = 0 if M is

infinite and FittZ(M) = (#M), the ideal generated by the size of M , if M is finite.

• If M �M ′ is a surjection of finitely presented R-modules, then FittR(M ′) ⊃ FittR(M).

• (Base Change) If S is an R-algebra and M is a finitely presented R-module, then

FittS(M ⊗R S) = FittR(M) · S.

Corollary 4.3. Let T and B be as in Theorem 1.2. Then FittT(B/IB) ⊂ I.

Proof. Since B is a fractional ideal of T, it is a faithful T-module, i.e. AnnT(B) = 0. It

follows that FittT(B) = 0. Therefore FittT/I(B/IB) = 0, whence FittT(B/IB) ⊂ I.

Motivated by this corollary, one of the insights of Theorem 1.3 is its statement—in the

residually indistinguishable case, instead of attempting to necessarily construct a T-module

of the form B/IB for a faithful T-module B, one should just attempt to construct some

module M such that FittT(M) ⊂ I.

4.2 Construction of M

To prove Theorem 1.3, we must construct, under the assumptions of the theorem, a finitely

generated T-module M such that FittT(M) ⊂ I and a surjective cohomology class κ ∈
H1(G,M). Since we have specialized to χ1 = χ2 = 1, the G-action on M is trivial, whence

H1(G,M) is the group of continuous homomorphisms G → M . Since M is abelian, such

a homomorphism necessarily factors through the abelianization Gab and thereby induces a

T-module map

Gab ⊗T −→M. (16)

The surjectivity of κ is simply the statement that the T-module homomorphism (16) is

surjective.

These considerations lead to a very natural construction of the module M . Let ∆ denote

the augmentation ideal of G over T, i.e. the kernel of the T-algebra homomorphism

T[G] −→ T,
∑

ag[g] 7→
∑

ag. (17)
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It is then well-known that we have a T-module isomorphism

∆/∆2 ∼= Gab ⊗T,
∑

ag[g] 7→
∑

g ⊗ ag.

In order to apply the assumptions of Theorem 1.3, we must invoke the continuous group

representation ρ : G → GL2(K). Note that ρ can be extended to a T-algebra homomorphism

(also denoted ρ)

T[G] −→M2(K).

We then define

M = ρ(∆)/ρ(∆2),

so there is a canonical surjection

Gab ⊗T ∼= ∆/∆2 M.
ρ

As explained above, this homomorphism represents a surjective cohomology class

κ ∈ H1(G,M).

It remains to prove that FittT(M) ⊂ I, and this will take up the remainder of the paper.

4.3 Explication of Fitting Ideal

Since G is compact and ρ is continuous, the image ρ(G) is a compact subset of M2(K), and

hence m-adically bounded. The same is therefore true of ρ(T[G]) and ρ(∆). It follows that

ρ(∆) is a finitely generated T-module, and hence that M = ρ(∆)/ρ(∆2) is finitely generated

as well.

Let ρ1, . . . , ρr denote a set of T-module generators for ρ(∆), where ρi = ρ(gi − 1) for

elements gi ∈ G. The images of the ρi in M are T-module generators, and there are two

types of relations for these generators in M :

• We may have relations
r∑
i=1

εiρi = 0 in M2(K) (18)

for constants εi ∈ T. We call these relations of ε-type.

• For each pair 1 ≤ i, j ≤ r, we may write

ρiρj =
r∑

k=1

δijkρk (19)

for constants δijk ∈ T. These expressions vanish in M ; we call these relations of δ-type.

The Fitting ideal of M is the ideal generated by all determinants det(D) where D is an

r×r matrix whose rows have the form (ε1, . . . , εr) for relations of ε-type or (δij1, δij2, . . . , δijr)

for relations of δ-type. We need to show that det(D) ∈ I for each such matrix D.
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4.4 Traces and Determinants

In order to prove that det(D) ∈ I, we need to generate expressions involving the ρi that are

known to lie in I. This is given by the following.

Lemma 4.4. For each A ∈ ρ(∆), we have tr(A) ∈ I and det(A) ∈ I.

Proof. Let χ : T[G] −→ T denote the augmentation map defined in (17), i.e. the trivial

character of G extended to a T-algebra homomorphism on T[G]. The congruence (4) implies

that

tr(ρ(g)) ≡ 2χ(g) (mod I), det(ρ(g)) ≡ χ(g) (mod I)

for g ∈ G. A simple argument shows that these congruences extend to all g ∈ T[G] (see

[14, Lemma 3.1]). By definition, χ(g) = 0 for g ∈ ∆. The result follows.

4.5 An Altered Matrix

Write

ρi =

(
ai bi
ci di

)
.

Given an r × r matrix D of ε-type and δ-type relations as in §4.3, we define an associated

matrix D′ obtained by altering the rows of D as follows.

• No change for ε-type rows.

• For rows of δ-type, replace δijj by δijj − ai, replace δiji by δiji− dj, and leave the other

δijk unchanged.

Lemma 4.5. We have det(D′) = 0.

Proof. Let

w = (b1, b2, . . . , br)
T (column vector).

We claim that D′w = 0. For a row of ε-type, the corresponding component of D′w is∑r
i=1 εibi. This is the upper right coefficient of the matrix

∑r
i=1 εiρi, and hence vanishes by

the definition of the εi (see (18)). Similarly for a row of δ-type, the corresponding component

of D′w is (
r∑

k=1

δijkbk

)
− (aibj + bidj) = 0. (20)

The quantity (20) vanishes because each expression in parentheses equals the upper right

coefficient of ρiρj; this follows on the left by the definition (19) of the δijk, and on the right

by the definition of matrix multiplication.

The ring K = Frac(T) is a product of fields. To prove det(D′) = 0, it suffices to prove this

on each field factor of K. Now, in each field factor of K, the projection of some bi must be

12



nonzero; otherwise the projection of ρ to that field factor would be lower triangular and hence

reducible, contrary to assumption. Therefore the equation D′w = 0 implies det(D′) = 0 as

desired.

Our goal is to show that det(D) ∈ I, and we have shown that det(D′) = 0. It therefore

suffices to show that det(D′)− det(D) ∈ I. In other words, the alterations used to go from

D to D′ are small enough to leave the determinant unchanged modulo I. Let us motivate

our strategy to prove this with an example.

4.6 An Example

Suppose r = 2. We consider a matrix with only rows of δ-type, namely

D =

(
δ121 δ122
δ211 δ212

)
, whence D′ =

(
δ121 − d2 δ122 − a1
δ211 − a2 δ212 − d1

)
.

As shorthand, write ti = ai + di for the trace of ρi. We write d12 = c1b2 + d1d2 for the

“d”-component of ρ1ρ2, and t12 = a12 + d12 for the trace of ρ1ρ2. By multilinearity of the

determinant, we have

det(D′)− det(D) = − det

(
d2 a1
δ211 δ212

)
− det

(
δ121 δ122
a2 d1

)
+ det

(
d2 a1
a2 d1

)
. (21)

We evaluate the determinants on the right using the substitution ti = ai + di where conve-

nient. Then

det

(
d2 a1
δ211 δ212

)
= −t1δ211 + (d1δ211 + d2δ212)

= −t1δ211 + d21 (22)

= −t1δ211 + (c2b1 + d1d2). (23)

Note that equation (22) uses the definition of the δijk. Similarly

det

(
δ121 δ122
a2 d1

)
= −t2δ122 + (d1δ121 + d2δ122)

= −t2δ122 + d12

= −t2δ122 + (c1b2 + d1d2). (24)

Combining (21), (23), and (24), we obtain

det(D′)− det(D) = t1δ211 − (c2b1 + d2d1)+

+ t2δ122 − (c1b2 + d1d2)+

+ (d1d2 − a1a2)
= t1δ211 + t2δ122 − t12. (25)

By Lemma 4.4, the expression (25) lies in I as desired.
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5 Formal Variables

We do not know how to establish explicit formulae such as (25) to prove that

det(D′)− det(D) ∈ I

in general. Instead, we will prove abstractly the existence of polynomial identities such as

(25) that express the difference det(D′) − det(D) in terms of traces and determinants of

elements of ρ(∆).

For this, it is convenient to shift our perspective from working with the ring T to working

with formal polynomial rings. We will define a polynomial algebra R and a specialization

homomorphism π : R −→ K = Frac(T). We will show that the identities we need hold in

R/ kerπ, so they apply in T as well by applying π. The advantage of working in R is that we

can identify the subring generated by traces and determinants of matrices mapping to ρ(∆)

under π as the subspace of invariants under a certain group action, and use cohomological

considerations to show that our element of interest lies in this subspace. We now describe

this in greater detail.

5.1 The ring R

Define

R0 = Z[εi, δijk],

the commutative polynomial ring in r2 free variables enumerated by the entries of the matrix

D. Define

R = R0[ai, bi, ci,di]
r
i=1,

a commutative polynomial ring in r2 + 4r free variables. Define a ring homomorphism

R −→ K in the natural way indicated by our variable names, i.e.

π(εi) = εi, π(δijk) = δijk, π(ai) = ai, . . . , π(di) = di.

Note that π(R0) ⊂ T.

Finally, let D,D′ ∈Mr(R) denote the natural matrices whose images under π are equal

D,D′, respectively, i.e. they are defined by making each entry bold. Our goal is to prove

that

π(det(D′)− det(D)) = det(D′)− det(D) ∈ I.

5.2 Relation Ideal

We now define the polynomial relations that allow us to reduce det(D′) − det(D) to an

expression involving traces and determinants, as in the example of §4.6. Define

ρi =

(
ai bi
ci di

)
∈M2(R).
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Let J ⊂ R be the ideal generated by the following:

• The 4 coefficients of
r∑
i=1

εiρi (26)

for each row of ε-type in D.

• The 4 coefficients of

ρiρj −
r∑

k=1

δijkρk (27)

for each row of δ-type in D.

It is clear that J ⊂ ker(π).

5.3 Subring of traces and determinants

Let A ⊂ R denote the R0-subalgebra generated by the traces and determinants of all matrices

in the noncommutative Z-algebra generated by the matrices ρi. Denote by A the image of

A in R/J . We will show that in order to deduce our desired result π(det(D′)−det(D)) ∈ I,

it suffices to prove that the image of det(D′) − det(D) in R/J lies in A. For this, it is

important that det(D′)− det(D) lies in the following ideal of R:

IR = 〈ai, bi, ci,di〉.

Lemma 5.1. We have det(D′)− det(D) ∈ IR.

Proof. This follows immediately from multilinearity of the determinant since every entry of

D′ −D lies in IR.

Lemma 5.2. We have π(A ∩ IR) ⊂ I.

Proof. Let f ∈ Z〈X1, . . . , Xr〉 be an element of the free polynomial algebra in r noncom-

muting variables. If f has no constant term, then

π(f(ρ1, . . . ,ρr)) = f(ρ1, . . . , ρr) ∈ ρ(∆),

and hence the trace and determinant of this element lies in I by Lemma 4.4. The element

f(ρ1, . . . ,ρr) clearly has coefficients lying in IR. From these considerations, to prove the

lemma it suffices to prove that π(R0 ∩ IR) ⊂ I. In fact, it is clear that R0 ∩ IR = 0, as

R/IR ∼= R0,

with ai, bi, ci,di 7→ 0. This concludes the proof.
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We summarize the result of this section: in order to prove the desired result

det(D′)− det(D) ∈ I, (28)

it suffices to prove that the image of det(D′) − det(D) in R/J lies in the subring A, the

image of A in R/J . Indeed, if this condition holds, then then

det(D′)− det(D) = a+ j (29)

for some a ∈ A, j ∈ J . Since J ⊂ IR, we have a ∈ IR by Lemma 5.1 and hence π(a) ∈ I by

Lemma 5.2. Since π(j) = 0, the desired result (28) follows from applying π to (29).

6 Matrix Invariant Theory and Rational Cohomology

The advantage of passing to the ring of formal variables R (rather than working directly

with T and K) is that we may identify the subring A ⊂ R as the subspace invariant under

a group action, rather than needing to write down explicit formulae. To this end, we have

the following important classical result, called the fundamental theorem of matrix invariant

theory.

Theorem 6.1. Endow the ring Z[ai, bi, ci,di]
r
i=1, with an action of GL2(Z) defined by si-

multaneous conjugation on the matrices ρi =

(
ai bi
ci di

)
. The subring of invariant elements

is generated over Z by the traces and determinants of all matrices in the noncommutative

algebra generated by the ρi.

With notation as in §5.1, we have the following corollary.

Corollary 6.2. Endow the ring R with an action of GL2(Z) defined by simultaneous con-

jugation on the matrices ρi =

(
ai bi
ci di

)
. The subring of invariant elements is equal to

A.

Proof. We may write R = Z[ai, bi, ci,di]
r
i=1 ⊗ R0, where GL2(Z) acts trivially on R0. Since

R0 is Z-flat, the result follows immediately from Theorem 6.1.

In our computations, it will be convenient to work with the Borel subgroup of GL2

consisting of lower triangular matrices. We would like restriction to the Borel to induce an

isomorphism on cohomology. This is not true in general for ordinary group cohomology,

so for this reason, we must work with the cohomology of algebraic groups called rational

cohomology. Here “rational” refers to actions defined by rational functions, rather than the

rational numbers; throughout, we work integrally over Z.
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6.1 Rational cohomology

For simplicity, we will describe algebraic groups and their cohomology through their “functor

of points” rather than via group schemes. We therefore view the algebraic group G = GL2

as the functor that associates to any commutative ring S the group GL2(S).

Definition 6.3. A rational G-module is a Z-module V endowed with a functorial action, for

every ring S, of the group GL2(S) on V ⊗S, such that the action of a matrix

(
a b
c d

)
is given

by rational functions in the variables a, b, c, d. We say that V is a rational G-module over a

commutative ring R0 if V has a structure of R0-module that commutes with the G-action.

Example 6.4. We denote by A = ZA⊕ZB⊕ZC⊕ZD the G-module given by the adjoint

representation, i.e. if g =

(
a b
c d

)
, then(

g · A g ·B
g · C g ·D

)
=

(
a b
c d

)−1(
A B
C D

)(
a b
c d

)
.

Let B ⊂ G denote the algebraic subgroup of lower triangular matrices. Note that for

g =

(
x 0
y z

)
in B, we have

g · A = A+
y

x
B, g ·B =

z

x
B, g ·D = D − y

x
B.

In particular, ZB is a B-submodule of A.

Definition 6.5 ([9] Ch. 4). If V is a G-module, define the invariants

H0(G, V ) = V G = {v ∈ V : for all commutative rings A and g ∈ G(A), g · v = v}.

The rational cohomology groups H i(G,−) are the right derived functors of H0(G,−).

The same definitions hold with G replaced by B. The following is our motivation for

using rational cohomology.

Theorem 6.6. Let V be a G-module. The restriction map

H i(G, V )→ H i(B, V )

is an isomorphism for all i ≥ 0.

Proof. See [6, Theorem 4.4] for the general case. In this paper we only need the case that

i = 0 and V is a finitely generated Z-module, so we describe the proof in this case. Injectivity

is clear, so we need only prove surjectivity. Let V denote the spectrum of the tensor algebra

of V ∗ = Hom(V,Z). This is the affine scheme whose points over a ring S are V (S) = V ⊗S.

Let x ∈ H0(B, V ). If S is any ring, we can define a map G(S) −→ V (S) = V ⊗ S by

g 7→ g · x. Since x ∈ H0(B, V ), this map factors through G(S)/B(S) = P1(S). This yields

a morphism of schemes P1 −→ V . Since V is affine, this morphism must be constant, i.e.

x ∈ H0(G, V ).
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Corollary 6.7. We have H0(B, R) = A.

Proof. First note that H0(G, R) = A. Indeed, the inclusion H0(G, R) ⊃ A is clear. Mean-

while the inclusion H0(G, R) ⊂ A follows from Corollary 6.2 and the observation that in-

variance under G is stronger than invariance under its group of points G(Z). The corollary

then follows from Theorem 6.6.

We conclude this section by stating a key input we will need from the cohomology theory

of algebraic groups. See [6, §4.2] for a proof.

Theorem 6.8. Let A be the adjoint representation defined in Example 6.4. For any non-

negative integer k, the B-module A⊗k ⊗R is acyclic, i.e. H i(B,A⊗k ⊗R) = 0 for i ≥ 1.

6.2 Roadmap

Let e = det(D′)− det(D) and denote by e its image in R/J . Our strategy to prove that e

lies in A is as follows. We will first prove that the ideal J is stable under the action of B.

We will then show that

e ∈ H0(B, R/J).

The long exact sequence in rational cohomology associated to

0 −→ J −→ R −→ R/J −→ 0

yields an exact sequence

H0(B, R) = A H0(B, R/J) H1(B, J).
cJ (30)

The equality on the left is Corollary 6.7. Let β ∈ H1(B, J) denote the image of e under the

connecting homomorphism cJ . In view of (30), the desired result e ∈ A will follow if we can

show that β = 0.

For this, we will define a certain B-stable subideal J ′ ⊂ J and show that in fact

e ∈ H0(B, R/J ′).

(This is a slight abuse of notation, as here e denotes the reduction of e modulo J ′.)

We let α = cJ ′(e) ∈ H1(B, J ′) defined as above. Then β = ι∗(α) where ι : J ′ → J is the

inclusion and ι∗ is the induced map on rational cohomology. To conclude, we will prove that

the map

ι∗ : H
1(B, J ′) −→ H1(B, J)

vanishes. Therefore β = 0, and our result follows.
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6.3 Invariance

Let J ′ ⊂ J denote the subideal generated by the “b” coefficients of the matrices in (26)–(27).

To be precise, J ′ is generated by:

• The elements
∑r

i=1 εibi for each row of ε-type in D.

• The elements aibj + bidj −
∑r

k=1 δijkbk for each row of δ-type in D.

Lemma 6.9. The ideals J ′ and J are stable under the action of B. More precisely, the

Z-module spanned by each set of 4 relations in (26)–(27) is isomorphic as a B-module to a

copy of the adjoint representation A (see Example 6.4).

Proof. The relations defining J are linear combinations of products of the ρi, with coefficients

in R0 (on which B acts trivially), and the definition of our action is by simultaneous conju-

gation on ρi. The second sentence of the Lemma follows. The stability of J ′ under B follows

since the module of upper right entries ZB ⊂ A is stable under B (see Example 6.4).

The goal of the rest of this subsection is to prove the following.

Lemma 6.10. We have e ∈ H0(B, R/J ′).

Proof. The matrix D has coefficients in R0, on which B acts trivially, so we must show that

det(D′) ∈ H0(B, R/J ′).

The group B is generated by elements of the form σx,y =

(
x 0
0 y

)
and τx =

(
1 0
x 1

)
. The

matrix D′ has coefficients in R0[ai,di] on which σx,y acts trivially. Therefore we must only

consider the action of τx.

The difference det(τx(D
′)) − det(D′) is a linear combination (with coefficients ±1) of

determinants of all matrices M obtained by starting with D′ and replacing some nonempty

subset of the rows w with τx(w)− w. We will show det(M) ∈ J ′ for each such matrix M .

Rows of ε-type in D′ contain only the elements εi ∈ R0 that are fixed by the action of

B. So any matrix M that contains a row τx(w) − w = 0 for a row w of ε-type will have

determinant 0. Therefore we need only consider matrices M that contain a row τx(w) − w
for a row w of δ-type. Conjugation by τx sends ai 7→ ai + bix and di 7→ di − bix. Say w is

associated to a pair (i, j). Then

τx(w)− w = (0, 0, . . . , bjx, 0, . . . ,−bix, 0, . . . , 0),

where there is bjx in the ith slot and −bix in the jth slot. Note that if i = j then τx(w)−w =

0 and hence det(M) = 0. So we assume i 6= j. We make the following alterations to M

which do not change the determinant:
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• We replace τx(w)− w by

(0, 0, . . . , x, 0, . . . ,−x, 0, . . . , 0).

At the same time, in every row other than w we multiply the jth coordinate by bj and

the ith coordinate by bi.

• We then add the new jth column to the new ith column.

• For each 1 ≤ k ≤ r, k 6= i, j, we add bk times the kth column to the new ith column.

In the matrix M that results from these changes, the ith coordinate is precisely the generator

of J ′ associated to the row. Therefore M has an entire column with elements lying in J ′, so

its determinant lies in J ′ as well.

6.4 Koszul complex

For simplicity, denote the r elements of J ′ corresponding to the rows of D′ by B1, . . . , Br,

i.e.

D′

b1...
br

 =

B1
...
Br

 .

The rank 1 modules ZBi are rational B-representations isomorphic to ZB ⊂ A as in Ex-

ample 6.4. Let V = ⊕ri=1ZBi. Consider the following complex of rational B-representations

over R:

0 (
∧r V )⊗R

(∧r−1 V
)
⊗R · · ·

(∧2 V
)
⊗R V ⊗R R.

fr fr−1 f2 f1

(31)

Here all wedge products and tensor products are over Z. The maps

fi :
(∧i

V
)
⊗R→

(∧i−1
V
)
⊗R

are given by

Bk1 ∧Bk2 ∧ · · · ∧Bki ⊗ r 7→
i∑

j=1

(−1)jBk1 ∧Bk2 ∧ · · · ∧ B̂kj ∧ · · ·Bki ⊗Bkjr.

Noting that each term (
∧r V ) ⊗ R in (31) is isomorphic to

∧r
R (V ⊗R), the sequence (31)

is precisely the Koszul complex for the free R-module V ⊗R. It is therefore exact if we can

prove that the elements B1, . . . , Br form a regular sequence in R.

Lemma 6.11. The elements B1, . . . , Br form a regular sequence in R.
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After enacting the change of variables for rows of δ-type:

δ′ijk =


δiji − dj k = i

δijj − ai k = j

δijk k 6= i, j,

we see the lemma follows from the following.

Lemma 6.12. Let S be a commutative ring and let T = S[xij]
r
i,j=1. The elements Li =∑r

j=1 xijyj form a regular sequence in T [y1, . . . , yr].

We leave the proof of Lemma 6.12 as an exercise, referring the reader to [6, Proposition

5.13].

6.5 Embedding into an acyclic complex

Theorem 6.13. There is a commutative diagram of complexes of rational B-modules

0 (
∧r V )⊗R

(∧r−1 V
)
⊗R · · ·

(∧2 V
)
⊗R V ⊗R J ′

0 Wr ⊗R Wr−2 ⊗R · · ·W2 ⊗R W1 ⊗R J,

fr

ιr

fr−1

ιr−1

f2

ι2

f1

ι1 ι0

gr gr−1 g2 g1

(32)

where the Wi ⊗R are acyclic B-modules for i ≥ 1.

Proof. We have already constructed the complex in the top row (see (31)), noting that the

image of f1 is the ideal generated by the Bi, namely J ′. Next we define the bottom row. Fix

an index i = 1, . . . , r, and suppose that the ith row of D corresponds to a pair (m,n), i.e.

we have Bi = Bmn where

ρmρn −
r∑

k=1

δmnkρk =

(
Amn Bmn

Cmn Dmn

)
.

We then let

Ai = ZAmn ⊕ ZBmn ⊕ ZCmn ⊕ ZDmn

denote the corresponding copy of the adjoint. Define

Wi =
⊕

{k1,k2,...,ki}⊂{1,...,r}

Ak1 ⊗ · · · ⊗ Aki .

The vertical maps ιi are given by, for k1 < k2 < · · · < ki,

Bk1 ∧ · · · ∧Bki ⊗ r 7→ Bk1 ⊗ · · · ⊗Bki ⊗ r.
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The maps gi are given by:

X1 ⊗X2 ⊗ · · · ⊗Xi ⊗ r 7→
i∑

j=1

(−1)jX1 ⊗X2 ⊗ · · · X̂j · · · ⊗Xi ⊗Xjr.

The image of the map g1 is precisely our ideal J . The fact that the bottom row of (32) is

a complex, as well as the commutativity of the diagram, is clear. The B-acyclicity of the

Wi ⊗R follows from Theorem 6.8.

6.6 A cascade of cohomology classes

Theorem 6.14. Let ι : J ′ → J be the inclusion and let

ι∗ : H
1(B, J ′) −→ H1(B, J)

be the induced map on first rational cohomology groups. Then ι∗ = 0.

Proof. Let the notation be as in Theorem 6.13. Recall im(f1) = J ′. Let

α1 ∈ H1(B, J ′) = H1(B, im(f1)).

We need to show that ι0,∗α1 = 0. The long exact sequence in cohomology associated to

0→ ker(f1)→ V ⊗R→ im(f1)→ 0

yields a class α2 ∈ H2(B, ker(f1)) that represents the obstruction to lifting α1 to a class in

H1(B, V ⊗ R). Writing ker(f1) = im(f2), we can view α2 ∈ H2(B, im(f2)) and repeat the

process above, using the coboundary in the long exact sequence associated to

0→ ker(f2)→
∧2

V ⊗R→ im(f2)→ 0

to obtain α3 ∈ H3(B, ker(f2)). Continuing in this way we obtain

αi ∈ H i(B, ker(fi−1)) = H i(B, im(fi))

for i = 1, . . . , r + 1. Note that αr+1 = 0 since ker(fr) = 0.

For each i = 1, . . . , r + 1, define

βi = ιi−1,∗αi ∈ H i(B, im(gi)).

In particular, we have β1 = ι0,∗α1, which is the class we are trying to show vanishes. The

bottom row of (32) is a complex but we do not claim it is exact. Nevertheless the obstruction

to βi ∈ H i(B, im(gi)) lifting to a class in H i(B,Wi ⊗ R) is precisely the image of βi+1 ∈
H i+1(B, im(gi+1)) in H i+1(B, ker(gi)). Now βr+1 = 0 since αr+1 = 0, and hence we conclude

that βr lifts to a class in Hr(B,Wr⊗R). However, by acyclicity we have Hr(B,Wr⊗R) = 0

and hence βr = 0. Therefore, βr−1 lifts to a class inHr−1(B,Wr−1⊗R); again this cohomology

group vanishes so βr−1 = 0. This downward cascading continues and we obtain βi = 0 for

all i. In particular β1 = 0 as desired.
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As explained in §6.2, Theorem 6.14 implies that e ∈ H0(B, R/J) lies in A ⊂ R/J . From

the discussion of §5.3, it follows that det(D′)− det(D) = − det(D) ∈ I. This completes the

proof of Theorem 1.3.

References
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