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Abstract

Following methods of Hayes, we state a conjectural product formula for ratios of
Brumer–Stark units over real quadratic fields.
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Introduction

Let F be a real quadratic field with ring of integers O, and let f be an integral ideal of F .
Let f denote the positive generator of f∩Z. For each fractional ideal b of F relatively prime
to f we associate the partial zeta function

ζf(b, s) =
∑
a⊂O

(a,f)=1
a∼fb

1

Nas
, s ∈ C, Re(s) > 1.

Here we write a ∼f b to denote that a and b have the same image in Cl+(f), the narrow ray
class group of F associated to the conductor f.

Let c denote a prime ideal of F not dividing f. The c-smoothed partial zeta functions of
F are defined as follows:

ζf,c(b, s) = ζf(b, s)− Nc1−sζf(bc−1, s). (1)
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The functions ζf and ζf,c extend to meromorphic functions on the complex plane. The function
ζf is analytic except for a simple pole at s = 1, and ζf,c is analytic everywhere. The values
of ζf at nonnegative integers s are rational numbers, and the values of ζf,c at nonnegative
integers s lie in Z[1/`], where ` is the prime of Z below c. In fact, if ` ≥ 5, then ζf,c(b, 0) is
an integer. Let us assume that this condition holds.

Let Hf denote the narrow ray class field of F . Class field theory provides a canonical
isomorphism

rec : Cl+(f)−→Gal(Hf/F ), (2)

denoted a 7→ σa. Let p be a prime number that is inert in F , and let H denote the maximal
subfield of Hf in which p splits completely. The reciprocity map induces an isomorphism
between the quotient of Cl+(f) by the subgroup generated by the image of (p) and Gal(H/F ).
The partial zeta functions associated to the extension H/K are given by

ζH/K(b, s) =
∑
a⊂O

(a,f)=1
a∼f,pb

1

Nas
=

∑
a∈Cl+(f)
a∼f,pb

ζf(a, s).

Here a ∼f,p b denotes equivalence in the quotient Cl+(f)/〈(p)〉. We assume that c does not
divide p, and define ζH/K,c(b, s) from ζH/K(b, s) as in (1).

As we now recall, the Brumer–Stark conjecture purports the existence of certain p-units
in H whose valuations at the places above p are related to zeta values.

Conjecture 1 (Brumer–Stark). Fix a prime P of H above p. For every fractional ideal b

relatively prime to f, there exists a p-unit uf,c(b) ∈ H× such that:

• |uf,c(b)| = 1 at every archimedean place of H,

• ordP(σa(uf,c(b))) = ζH/K,c(ab, 0) for every fractional ideal a prime to f, and

• uf,c(b) ≡ 1 (mod cOH).

If the Brumer–Stark units uf,c(b) exist, then they are unique, and they satisfy

σa(uf,c(b)) = uf,c(ab).

The goal of this paper is to give a conjectural infinite product formula for the elements uf,c(b)
in the p-adic field HP

∼= Fp. In fact, we can only give a product formula for the ratio of
the p-unit uf,c(b) with a certain power of the p-unit ue(bf−1) arising from the narrow Hilbert
class field He of F (here e = (1) is the unit ideal). In the case where F has narrow class
number 1, the p-units ue(b) are equal to 1, so we do obtain a product formula for uf,c(b) in
this case.

In earlier work, we stated a conjectural formula for uf,c(b) ∈ HP in terms of a certain
p-adic multiplicative integral [D]. In that paper, we showed that our conjectural formula
implied the refinements of the Brumer–Stark conjecture stated by Gross in [G1] and [G2].
In this paper, we manipulate our earlier integral formula following ideas of Hayes gleaned
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from [H1] and [H2] , and arrive at the desired product formula. The resulting infinite product
formula shares a strong formal resemblance to the product defining the exponential functions
of Drinfield modules. Indeed, Hayes’s proof of both the Brumer–Stark conjecture and Gross’s
refinements in the function field setting using these exponential functions is the motivation
for our present work.

The product formula

We assume that the prime ` splits in F , i.e. (`) = cc with c 6= c, and that ` is relatively
prime to f. For simplicity, we assume that p ≡ 1 (mod f) so in particular H = Hf, though
it should be possible to give a similar formula without this last assumption. Fix a positive
integer `′ such that ``′ ≡ 1 (mod f).

Denote by e : F ↪→ R2 the standard embedding e(x) = (x(1), x(2)) given by the two real
places of F . Define Tr,N : R2 → R by

Tr(x1, x2) = x1 + x2, N(x1, x2) = x1x2,

so that under the composition with e these maps have the expected interpretation as trace
and norm.

The group F× acts on R2 by componentwise multiplication with e(x), and under this
action the group of totally positive elements of F× preserves the positive quadrant Q =
(R>0)2. We denote by E(f) = 〈εf〉 the group of totally positive units of F congruent to 1

modulo f. Choose εf such that ε
(2)
f > ε

(1)
f . Let

m(f) = [E(e) : E(f)], i.e. εf = εm(f)
e .

Let D denote the Shintani domain given by the sector

D = {x · e(1) + y · e(εf) : 0 < x, 0 ≤ y} ⊂ Q, (3)

which is a fundamental domain for the action of E(f) on Q. For any positive integer n, let
N = N(n) = ``′pn. Let Dn denote the triangular region consisting of the intersection of D
with the open half-plane bounded above by the line through e(N) and e(Nεf):

Dn = {x · e(1) + y · e(εf) : 0 < x, 0 ≤ y, x+ y < N}.

Let b be an integral ideal of F relatively prime to `pf. Let Sn(b) denote the set of
elements of b−1 that are congruent to 1 modulo f, relatively prime to p, and with image
under e lying in Dn. (Note that here and throughout this paper, the condition α ≡ 1
(mod f) for an arbitrary α ∈ F means that α − 1 ∈ fOq for each prime q dividing f; here
Oq is the completion of O at q.) Define Pn(b) to be the product of the elements in Sn(b),
viewed as an element of O×p . We then propose:

Conjecture 2. Fix a prime P of H above p, giving an embedding H ⊂ HP
∼= Fp. The

Brumer–Stark units satisfy

uf,c(b)

ue,c(bf−1)m(f)
= pζf,c(b,0)−m(f)ζe,c(bf−1,0) · lim

n→∞

Pn(b)

Pn(bc−1)`
∈ F×p . (4)
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The integral formula

In earlier work [D], we presented a conjectural formula for the image of the Brumer–Stark
unit uf,c(b) in F×p . This formula has the shape of a multiplicative integral rather than an
infinite product. We now recall this formula, applied to our current setting.

Define for each x ∈ O/pn the Shintani zeta function

ζf(b,D, x, s) = Nb−s
∑ 1

Nαs
, Re(s)� 0,

where the sum runs over all α ∈ b−1 such that α ≡ 1 (mod f), α ≡ x (mod pn), and
e(α) ∈ D. Shintani proved that this zeta function extends to a meromorphic function on C
and assumes rational values at nonpositive integers s. Define

ζf,c(b,D, x, s) = ζf(b,D, x, s)− `1−sζf(bc−1,D, x, s).

We showed in [D] (though this was already present in the earlier work of Cassou-Nogues [CN])
that the values ζf,c(b,D, x, 0) are integral. The following conjectural formula was presented
in [D].

Conjecture 3. Fix a prime P of H above p, giving an embedding H ⊂ HP
∼= Fp. The

Brumer–Stark units are given by the formula

uf,c(b) := pζf,c(b,0) · lim
n→∞

∏
x∈(O/pn)×

xζf,c(b,D,x,0). (5)

Despite the fact that the formulae (4) and (5) both take the shape of p-adic limits of finite
products, we would like to stress the qualitative difference between these two expressions.
Formula (4) is truly an “infinite product” in that it is a limit of products of elements in a
growing nested sequence of sets. Formula (5) does not have this shape — the terms in the
product for a given n do not appear in the product for n + 1. Instead, the limit in formula
(5) should be interpreted as a multiplicative integral over the space O×p .

It is clear that the right side of (5) satisfies the second condition of Conjecture 1 for a = 1,
i.e. its P-adic valuation is ζf,c(b, 0). It is proven in [D] that this element is independent of
the Shintani domain D chosen, and that it satisfies the analytic properties of the refinements
of Conjecture 1 given by Gross in [G1] and [G2]. (See [D], Theorem 5.3 and the paragraph
following its proof, Proposition 3.5, and Theorem 3.22.) Of course, the algebraicity of this
element is left open.

The main theorem of this paper is that formula (5) implies (4).

Theorem 4. Conjecture 3 implies Conjecture 2.

As mentioned earlier, our interest in formula (4) lies with the connection to the function
field setting of Stark’s conjectures. In [H1], Hayes proved the Brumer–Stark conjecture and
Gross’s refinements over function fields using the theory of Drinfeld modules. Using Hayes’s
methods, we proved the analogs of Conjectures 2 and 3 in the function field setting in [DM].
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As part of that study, we proved the analog of Theorem 4 in the function field setting (see
[DM, Proposition 8.1]).

We conclude this introduction by noting the strong influence of the work of David Hayes
on our current investigations. Our paper [DM] was built upon Hayes’s paper [H1], and the
methods of the present paper are drawn entirely from Hayes’s paper [H2] . We are grateful
also to Benedict Gross and Paul Gunnels for making us aware of this latter paper.

1 Strategy of the proof

Let De be the Shintani domain for E(e) given by (3), with εf replaced by εe. Then the
Shintani domain D for E(f) can be written as a disjoint union

D =

m(f)−1⋃
i=0

εieDe.

Since formula (5) is independent of domain (see [D, Theorem 5.3]), Conjecture 3 yields

uf,c(b)

ue(bf−1)m(f)
= pζf,c(b,0)−m(f)ζe,c(bf−1,0) · lim

n→∞

∏
x∈(O/pn)×

xZf,c(b,D,x,0) (6)

where
Zf(b,D, x, s) = ζf(b,D, x, s)− Nf−sζe(bf−1,D, x, s)

and
Zf,c(b,D, x, s) = Zf(b,D, x, s)− `1−s · Zf(bc−1,D, x, s). (7)

Now

Nbs · Zf(b,D, x, s) =
∑

α∈b−1, e(α)∈D
α≡1 (mod f)
α≡x (mod pn)

1

Nαs
−

∑
α∈b−1f, e(α)∈D
α≡x (mod pn)

1

Nαs
. (8)

Let N = ``′pn, so in particular N ∈ b−1c, N ≡ 0 (mod pn), and N ≡ 1 (mod f). Let

M = M(b, x) = {α ∈ b−1 : α ≡ x (mod pn), α ≡ 1 (mod f)}.

Following Hayes, we decompose the first sum in (8) as Σ1 + Σ2, where

Σ1 :=
∑
α

1

Nαs
(α ∈M ; e(α) ∈ D − (e(N) +D))

and

Σ2 :=
∑
α

1

Nαs
(α ∈M ; e(α) ∈ e(N) +D).

Letting
L = {α ∈ b−1f : α ≡ x (mod pn)}
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(so M = L+N), we see from (8) that

Zf(b,D, x, s) = Σ1 + Σ2 − Σ3 (9)

where

Σ2 − Σ3 =
∑
α

(
1

N(α +N)s
− 1

Nαs

)
, (α ∈ L; e(α) ∈ D).

In section 3 we prove that the contribution of the Σ2 − Σ3 terms to Zf,c(b, x,D, 0) is 0:(
(Σ2 − Σ3)(b)− `1−s(Σ2 − Σ3)(bc−1)

)
|s=0 = 0. (10)

To study the contribution of Σ1, we decompose D−(e(N)+D) as a disjoint union DntT ,
where T is the half-open strip

T = T (n) = {x · e(1) + y · e(εf1) : 0 < x ≤ N, N ≤ x+ y}.

Now ∑
γ

1

Nγs
, (γ ∈M ; e(γ) ∈ Dn)

is a finite sum since Dn is bounded and M is discrete; therefore its value at s = 0 is simply
#(Dn ∩ e(M)). If we write ΣT for the value of the analytic continuation of the series∑

γ

1

Nγs
, (γ ∈M ; e(γ) ∈ T )

at s = 0, we thus have
(Σ1)|s=0 = #(Dn ∩ e(M)) + ΣT . (11)

We will show in section 4 that the contribution of ΣT to Zf,c(b, x,D, 0) is equal to zero:

ΣT (b)− ` · ΣT (bc−1) = 0. (12)

Combining (7), (9), (10), (11), and (12), we therefore have

Zf,c(b, x,D, 0) = #(Dn ∩ e(M(b, x)))− ` ·#(Dn ∩ e(M(bc−1, x))).

We use this expression to evaluate the limit in (6). Note that∏
x∈(O/pn)×

x#(Dn∩e(M(b,x))) ≡
∏

α∈Sn(b)

α = Pn(b) (mod pn)

and similarly ∏
x∈(O/pn)×

x#(Dn∩e(M(bc−1,x))) ≡Pn(bc−1) (mod pn).

It follows that the right side of (6) is equal to the right side of (4). This completes the proof
of Theorem 4, up to the demonstration of (10) and (12).

6



2 Preliminaries

We recall the notation and some basic results from [H2]. For a fractional ideal a of F , let
µ(a) denote the positive generator of the cyclic group a∩Q. Define ν(a) by Na = µ(a) ·ν(a).
Now let b and f be relatively prime integral ideals as in the introduction, and let f = µ(f).
We write q = µ(b−1f). By [H2, Lemma 3.8], we have

q = f/g for some positive integer g relatively prime to f. (13)

Write O = Z+Zω. Recall that (`) = cc is a prime that splits in F , and that is ` relatively
prime to b and f. Note that

µ(b−1fc) = q` and ν(b−1f) = ν(b−1fc).

By [H2, Lemma 3.6], there exists y ∈ Q such that σ := y + ν(b−1f)ω ∈ b−1fc, and then we
have

b−1f = Zq ⊕ Zσ, b−1cf = Zq`⊕ Zσ. (14)

Define a matrix

(
a b
c d

)
∈ SL2(Z) by

(q σ) εf = (q σ)

(
a b
c d

)
. (15)

Then in fact

(
a b
c d

)
∈ Γ1(f), i.e. we have

c ≡ a− 1 ≡ d− 1 ≡ 0 (mod f), (16)

by [H2, Lemma 3.10]. We require one additional result before proceeding with the proof of
(10) and (12).

Lemma 2.1. Define δ ∈ Z by fδ = gcd(c, d− 1). Then ` - d−1
fδ
.

Proof. From (15) we find

ε−1
f − 1 = (d− 1)− c

q
σ

= δg

(
d− 1

fδ
q − c

fδ
σ

)
. (17)

From (14) we see that ` | d−1
fδ

implies that

ε−1
f − 1 ∈ δg · b−1fc. (18)

Conjugating (18) and multiplying by −εf, we obtain

ε−1
f − 1 ∈ δg · b−1fc. (19)

Since b and f are relatively prime to (`) = cc by assumption, (18) and (19) imply that

ε−1
f − 1 ∈ δg` · b−1f,

which in conjunction with (17) implies that ` | c
fδ

. This divisibility along with ` | d−1
fδ

contradicts the definition of δ.
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3 The contribution of Σ2 − Σ3

In this section, we use a formula of Shintani (again following Hayes) to evaluate the analytic
continuation of Σ2 − Σ3 at s = 0.

If ρ, τ are totally positive basis vectors for R2 and γ ∈ Q, the function

∞∑
m,n=0

1

N(γ +mρ+ nτ)s

converges absolutely for Re(s) > 1. This function can be analytically continued to the entire
complex plane and at s = 0 has the value

B1(w)B1(z) +
1

4
(B2(w) Tr(ρ/τ) +B2(z) Tr(τ/ρ)) , (20)

where w, z ∈ R are given by γ = wρ+ zτ . Here B1(x) = x− 1/2 and B2(x) = x2 − x+ 1/6
are the usual Bernoulli polynomials. We will apply formula (20) with ρ = e(Nq) and
τ = e(Nqεf), in which case

Tr(ρ/τ) = Tr(τ/ρ) = a+ d.

Let us write x ≡ uq`+vσ (mod pn) where u and v are integers that are uniquely well-defined
modulo pn. Every α ∈ L with e(α) ∈ D can be written uniquely as

α = γ +mpnq + npnqεf,

where m,n ≥ 0 are integers and

γ = x1p
nq + x2p

nqεf, 0 < x1 ≤ 1, 0 ≤ x2 < 1,

such that γ ∈ L. In view of (14) and the equation qεf = qa + σc (from (15)), the condition
γ ∈ L is equivalent to

x1 + x2a ∈
u`

pn
+ Z

x2 ∈
1

c

(
v

pn
+ Z

)
.

Therefore, writing 〈x〉 = x− bxc and

{x} =

{
x− bxc if x 6∈ Z

1 if x ∈ Z,

we have

Σ3|s=0 =
c−1∑
h=0

(
B1(x1)B1(x2) +

a+ d

4
(B2(x1) +B2(x2))

)
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where

x2 =

〈
1

c

(
v

pn
+ h

)〉
and x1 =

{
u`

pn
− x2a

}
.

Now Σ2|s=0 is given by the exact same expression with x1 replaced by x1 + ``′/q, and hence
we obtain

(Σ2 − Σ3)|s=0 =
c−1∑
h=0

(
``′

q
B1(x2) +

a+ d

4

(
B2

(
x1 +

``′

q

)
−B2(x1)

))
.

The first term in this expression is easily calculated to equal (〈v/pn〉 − 1/2)``′/q using the
distribution relation for B1. The second term is calculated using the formula

B2(x+ y)−B2(x) = 2yB1(x) + y2

and the distribution relation for B1 to equal

a+ d

4
· ``

′

q

(
2

{
uc`− va

pn

}
− 1 +

c``′

q

)
.

Therefore our final expression is

(Σ2 − Σ3)|s=0 =
``′

q

[〈
v

pn

〉
− 1

2
+
a+ d

4

(
2

{
u`c− va

pn

}
+
c``′

q
− 1

)]
.

The corresponding expression for b replaced by bc−1 is obtained by replacing q by q`, u` by
u, and c by c` — we see by inspection that we obtain exactly the same value divided by `.
In other words, the contribution of the Σ2 − Σ3 terms to Zf,c(b, x,D, 0) is 0:(

(Σ2 − Σ3)(b)− `1−s(Σ2 − Σ3)(bc−1)
)
|s=0 = 0.

4 The strip T

It remains to prove (12). We once again write x ≡ uq`+ vσ (mod pn) with u, v ∈ Z, so that
by (14) we have M = uq` + vσ + N + Zqpn ⊕ Zσpn. Therefore we can write any γ ∈ M in
the form

γ = uq`+ vσ +N + qpnh+ σpnj (h, j ∈ Z)

= x+ yεf

where

x = uq`+N + qpnh− aq

c
(v + pnj),

y =
q

c
(v + pnj).

9



These latter equalities follow from σ = q
c
(εf − a), which is deduced from (15).

Let us enact the change of variables (w z) = (j h)

(
a −b
−c d

)
. Then

x = x(w) = N +
q

c
(u`c− av)− qpn

c
w

y = y(w, z) =
q

c
(v + pndw + pncz).

The inequalities 0 < x ≤ N and N ≤ x+ y defining the condition e(γ) ∈ T simplify to

u`c− av
pn

≤ w <
u`c− av +Nc/q

pn
,

z ≥ −u`c+ (a− 1)v + (1− d)wpn

cpn
.

Therefore, if we let

λ :=

⌈
u`c− av

pn

⌉
and βw :=

⌈
−u`c+ (a− 1)v + (1− d)wpn

cpn

⌉
,

then ∑
γ∈M
e(γ)∈T

1

Nγs
=

λ+``′c/q−1∑
w=λ

∞∑
k=0

1

N(x(w) + y(w, βw)εf + kqpnεf)s
. (21)

We now invoke another formula of Shintani: for β ∈ Q, the function

∞∑
k=0

1

N(β + e(k))s

extends to a meromorphic function in s ∈ C, and obtains the value 1
2
(1 − Tr(β)) at s = 0.

Applying this formula with β = e(β′), where

β′ =
x(w) + y(w, βw)εf

qpnεf

=

(
N

qpn
+
u`c− av
cpn

− w

c

)
ε−1
f +

1

cpn
(v + pndw + pncβw) ,

we see from (21) that

ΣT =

λ+``′c/q−1∑
w=λ

[
1

2
−
(
N

qpn
+
u`c− av
cpn

− w

c

)
a+ d

2
− 1

cpn
(v + pndw + pncβw)

]
. (22)

As in section 3, the analogous expression for b replaced by bc−1 is obtained by replacing c
by c`, q by q`, and u` by u. One sees by inspection that in the difference ΣT (b)− `ΣT (bc−1),
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all the terms in (22) cancel except the first and last, i.e. the 1/2 and the −βw. In other
words, if we write

α =
−u`c+ (a− 1)v

cpn
and αw = α +

1− d
c

w

so that βw = dαwe, then

ΣT (b)− ` · ΣT (bc−1) =

λ+``′c/q−1∑
w=λ

((
1

2
− dαwe

)
− `
(

1

2
−
⌈αw
`

⌉))

=

λ+``′c/q−1∑
w=λ

(
B̃1(αw)− `B̃1(αw/`)

)
, (23)

where B̃1(x) = B1({x}) = {x} − 1/2. Since B̃1(x) depends only on x mod Z, and since

1− d
q

= g · 1− d
f
∈ Z

(see (13) and (16)), it follows that the terms B̃1(αw) and B̃1(αw/`) depend only the value
of w modulo ``′c/q; in other words, the value of the integer λ does not affect the sum
(23). Furthermore, if we recall that δ is the integer such that fδ = gcd(c, d − 1), then the
distribution relation for B̃1(x) implies that∑

w mod ``′c/q

B̃1(αw) = ``′gδ · B̃1

(
αc

fδ

)
.

Lemma 2.1 implies that fδ = gcd(c`, d− 1), so∑
w mod ``′c/q

B̃1(αw/`) = `′gδ · B̃1

(
αc

fδ

)
.

It follows that ΣT (b)− ` · ΣT (bc−1) = 0 as desired.
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