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Abstract

We prove that the p-adic L-series of the tensor square of a p-ordinary modular form
factors as the product of the symmetric square p-adic L-series of the form and a Kubota–
Leopoldt p-adic L-series. This establishes a generalization of a conjecture of Citro.
Greenberg’s exceptional zero conjecture for the adjoint follows as a corollary of our
theorem.

Our method of proof follows that of Gross, who proved a factorization result for
the Katz p-adic L-series associated to the restriction of a Dirichlet character. Whereas
Gross’s method is based on comparing circular units with elliptic units, our method
is based on comparing these same circular units with a new family of units (called
Beilinson–Flach units) that we construct. The Beilinson–Flach units are constructed
using Bloch’s intersection theory of higher Chow groups applied to products of modular
curves. We relate these units to special values of classical and p-adic L-functions using
work of Beilinson (as generalized by Lei–Loeffler–Zerbes) in the archimedean case and
Bertolini–Darmon–Rotger (as generalized by Kings–Loeffler–Zerbes) in the p-adic case.
Central to our method are two compatibility theorems regarding Bloch’s intersection
pairing and the classical and p-adic Beilinson regulators defined on higher Chow groups.
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1. Introduction

The main result of this paper is a factorization formula for the p-adic L-function associated to

the tensor square of a p-ordinary cuspidal eigenform. We introduce some notation to state our

result. Let

f =
∞∑
n=1

anq
n ∈ Sk(Γ1(Nf ), χf ), g =

∞∑
n=1

bnq
n ∈ S`(Γ1(Ng), χg)

be two normalized cuspidal eigenforms of weights k, ` > 2 and nebentype characters χf , χg,

respectively. Let ψ be an auxiliary Dirichlet character of conductor Nψ, and let N = NfNgNψ.

The Rankin L-series of f and g twisted by ψ is defined by

DN (f, g, ψ, s) = LN (χfχgψ
2, 2s+ 2− k − `)

∞∑
n=1

anbnψ(n)n−s,

where LN denotes a Dirichlet L-function with the Euler factors at primes dividing N removed.

The Rankin series DN (f, g, ψ, s) has an Euler product equal to that of the primitive L-series

L(f ⊗ g ⊗ ψ, s) outside of primes dividing N ; see §2.3.

Shimura proved that the values of DN (f, g, ψ, s) normalized by the appropriate period are

algebraic when s is critical [Sh]. There exist critical values only when the weights of f and g are

unequal; if k > `, then the critical s are those in the range ` 6 s 6 k − 1.

Let p > 5 be a prime number. Hida constructed a p-adic L-function interpolating the critical

values ofDN (f, g, ψ, s) when f and g are p-ordinary eigenforms. LetW = Homcont(Z
∗
p,C

∗
p) denote

p-adic weight space, which contains Z via s 7→ νs ∈ W, where νs(z) = zs. After modifying Hida’s

function to preserve primitivity at the bad primes, one obtains a p-adic L-function Lp(f⊗g⊗ψ, σ)

for σ ∈ W interpolating the algebraic parts of the values L(f ⊗ g ⊗ ψβ−1, s) for characters β

of p-power conductor and integers s satisfying ` 6 s 6 k − 1. Hida extended his result in [Hi3]

by allowing f and g to vary in p-adic families. This allows for the definition of Lp(f ⊗ g ⊗ ψ, σ)

when k = `, even though in this case the classical Rankin function L(f ⊗ g⊗ψ, s) has no critical

values.

The main theorem of this paper is a factorization of Hida’s p-adic Rankin L-series when

f = g. To motivate this result, we consider the setting for classical L-series. Let ρf denote the

2-dimensional `-adic Galois representation attached to the form f , and let ε denote the `-adic

cyclotomic character. In view of the the decomposition

ρf ⊗ ρf ⊗ ψ ∼= (Sym2 ρf ⊗ ψ)⊕ (χψεk−1),

the Artin formalism yields an equality of primitive1 L-series:

L(f ⊗ f ⊗ ψ, s) = L(Sym2 f ⊗ ψ, s)L(χψ, s− k + 1). (1)

1Primitive refers to L-series that are defined via the Artin formalism by Euler products given by the characteristic
polynomial of Frobenius on the inertia coinvariants of a representation; imprimitive L-series are defined explicitly
in terms of Fourier coefficients of modular forms. The two differ only by certain Euler factors at the bad primes.
Precise definitions are given in §2.2 and §2.3.
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Our main theorem is a p-adic analogue of this result. Suppose that p - Nψ (this is no restric-

tion as p-power conductor twists are incorporated into W). We denote by Lp(Sym2⊗ψ, σ) the

Schmidt–Hida p-adic L-function ([Sc]) interpolating the algebraic parts of the classical values

L(Sym2 f ⊗ ψβ−1, s) for p-power conductor characters β and integers s satisfying 1 6 s 6 k − 1

and ψβ−1(−1) = (−1)s+1 or k 6 s 6 2k − 2 and ψβ−1(−1) = (−1)s.

Theorem 1. Let f ∈ Sk(Γ1(N), χ) be a p-ordinary eigenform. Decompose χ = χ′χp into its

prime-to-p and p-power parts. Define κ ∈ W by κ(z) = zkχp(z). If σ(−1) = −ψ(−1), we have

Lp(f ⊗ f ⊗ ψ, σ) = Lp(Sym2 f ⊗ ψ, σ)Lp(χ
′ψ, z · σ/κ). (2)

If p - N , the same equation holds for σ(−1) = ψ(−1) as well.

Here Lp(χ
′ψ, σ) denotes a Kubota–Leopoldt p-adic L-function viewed as a function on weight

space via a convention described below. As noted above, the interest and difficulty in proving

Theorem 1 arises from the fact that Lp(f⊗f⊗ψ, s) has no critical values, and hence the proof does

not simply arise by p-adically interpolating the classical formula (1). Instead, our factorization

formula is proven by generalizing the method of Gross in [Gro].

Remark 1.1. In order to obtain an exact formula such as (2), one must be careful about nor-

malizations. Our conventions are described in Section 3. For now we stress one important point

already mentioned above: since Hida’s p-adic Rankin L-series interpolates imprimitive L-values,

certain Euler factors at primes dividing N must be adjusted in defining Lp(f ⊗ f ⊗ ψ, σ) from

Hida’s function. As a general rule in this paper, imprimitive L-functions are noted with a comma

(e.g. L(Sym2 f, ψ) or L(f, g, ψ)) whereas primitive L-functions are denoted with a tensor symbol

(e.g. L(Sym2 f⊗ψ) or L(f⊗g⊗ψ)). This holds even for p-adic L-functions with the exception of

Euler factors at p, where certain factors must always be adjusted for the purpose of interpolation.

Remark 1.2. The reason that we must impose the condition σ(−1) = −ψ(−1) when p | N is

that Hida only defined Lp(Sym2 f ⊗ψ, σ) on this half of weight space. Under this sign condition,

arithmetic weights να,s with 1 6 s 6 k−1 are critical; under the reversed sign condition, weights

να,s with k 6 s 6 2k− 2 are critical. Schmidt had earlier defined Lp(Sym2 f ⊗ψ, σ) for σ(−1) =

ψ(−1) and showed that it satisfies a functional equation, but only under the assumption p - N .

It was suggested to us by D. Loeffler that one could define Lp(Sym2 f ⊗ψ, σ) for σ(−1) = ψ(−1)

even when p | N by means of the functional equation, and then prove that it satisfies the desired

interpolation property using the classical functional equation; we do not explore this idea here.

We learned after the completion of this project that G. Rosso has generalized the Schmidt–

Hida construction and defined a 2-variable p-adic L-function Lp(Sym2 f ⊗ ψ, σ) for σ(−1) =

ψ(−1), even over arbitrary totally real fields (see [Ros, Theorem A.3] and [Ros2, Theorems A.2

and B.1]). However, the interpolation formula for this function at forms f with level divisible by p

is not given explicitly in those articles. We leave open the problem of explicating the interpolation

formula in this case and combining it with the methods of this paper to prove equation (2) for

p | N and σ(−1) = ψ(−1).
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Remark 1.3. It is common to present p-adic L-functions as functions of a variable s ∈ Zp.

Let us rephrase our main result in this language. For an equivalence class i mod (p − 1), let

L
[i]
p (Sym2 f ⊗ ψ, s) denote the branch of Schmidt’s p-adic L-function interpolating the algebraic

parts of the classical values L(Sym2 f, ωs−iψ, s) for 1 6 s 6 k − 1 when ψ(−1) = (−1)i+1 and

for k 6 s 6 2k − 2 when ψ(−1) = (−1)i. (Here ω is the Teichmüller character.) In terms of our

function defined earlier on weight space, it is given by

L[i]
p (Sym2 f ⊗ ψ, s) = Lp(Sym2 f ⊗ ψ, ωi(z)〈z〉s), (3)

where 〈z〉 := z/ω(z). Similarly let

L[i]
p (f ⊗ f ⊗ ψ, s) = Lp(f ⊗ f ⊗ ψ, ωi(z)〈z〉s).

Theorem 1 can then be written as follows:

L[i]
p (f ⊗ f ⊗ ψ, s) = L[i]

p (Sym2 f ⊗ ψ, s)Lp(χ−1ψ−1ωi−k+1, k − s) (4)

if ψ(−1) = (−1)i+1, and

L[i]
p (f ⊗ f ⊗ ψ, s) = L[i]

p (Sym2 f ⊗ ψ, s)Lp(χψωk−i, s− k + 1) (5)

if ψ(−1) = (−1)i.

Here Lp(χ, s) is the Kubota–Leopoldt p-adic L-function of the even character χ in the

usual notation. In comparing (1) and (4), note that the classical values L(χψ, s − k + 1) and

L(χ−1ψ−1, k − s) are related by the functional equation for Dirichlet L-series.

Remark 1.4. In the case ψ = χ−1 and i ≡ k (mod p−1), equation (5) was conjectured by Citro

[Ci] (see Section 1.3 below).

Before outlining the proof of Theorem 1, we recall how Lp(f ⊗ f ⊗ ψ) is defined and state

our application to Greenberg’s conjecture.

1.1 Hida families

An integer k and p-power conductor Dirichlet character α give rise to an arithmetic point of

weight space W defined by νk,α(z) = α(z)zk. When α = 1 we simply write νk.

Let F be a Hida family2 of p-adic cusp forms with tame level N and character χF of conductor

dividing N . Assume that the family F is N -new. For simplicity in this introduction, we assume

that F is parameterized by a connected component

Wk0 = {κ ∈ W : κ(ζ) = ζk0 , ζ ∈ µp−1 ⊂ Z∗p}, k0 ∈ Z/(p− 1)Z

of weight space.3 The specialization Fκ = Fk,α at an arithmetic point κ = νk,α ∈ Wk0 with k > 2

is a classical cuspidal p-ordinary eigenform form of weight k and nebentype χFα. (Note that χF

therefore has the same parity as k0.)

2Details about our definitions and conventions regarding Hida families will be given in §3.4. In particular, in this
paper a Hida family corresponds to an irreducible component of Hida’s Hecke algebra. This is the usual convention,
though for some authors a Hida family corresponds to a connected component of Hida’s Hecke algebra.
3In general, a Hida family is parameterized by a finite cover of such a connected component; see §3.4.
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Given another Hida family G and an auxiliary Dirichlet character ψ, Hida defined a 3-variable

p-adic L-function Lp(F,G, ψ, κ, λ, σ) for (κ, λ, σ) ∈ Wk0×W`0×W. At arithmetic points κ = νk,α,

λ = ν`,β, and σ = νs,γ such that k−1 > s > ` > 2, the function Lp(F,G) interpolates the critical

values of the classical Rankin L-series DNpr(Fk,α, G`,β, ψγ
−1, s). Here pr is the lcm of p and the

conductors of α and β.

Now, suppose we are given two p-ordinary cuspidal eigenforms f and g as in the beginning

of the introduction. We can find Hida families F and G that interpolate the forms f and g

respectively, i.e. such that the specializations Fκ and Gλ at certain arithmetic weights κ, λ are

the ordinary p-stabilizations of f and g, respectively (of course, if p already divides the level of

f or g, then stabilization is not necessary). For σ ∈ W, one then defines

Lp(f, g, ψ, σ) := Lp(F,G, ψ, κ, λ, σ). (6)

Since k, ` > 2, the families F,G interpolating f, g are unique by results of Hida, and therefore

Lp(f, g, ψ, σ) is well-defined.4

1.2 Two-variable factorization

Let Lp(Sym2 F,ψ, κ, σ) denote Hida’s 2-variable p-adic L-series interpolating the algebraic parts

of the classical values L(Sym2 Fκ, ψβ
−1, s) in the range 1 6 s 6 k− 1 when σ = νs,β and Fκ has

weight k. The actual formula we prove is the following.

Theorem 2. Suppose that σ(−1) = −ψ(−1). We have

Lp(F, F, ψ, κ, κ, σ) = E(κ, σ) · Lp(Sym2 F,ψ, κ, σ)Lp(χFψ, z · σ/κ), (7)

where

E(κ, σ) =
∏
`|N

(1− χFψκσ−1(`)/`).

The Euler factor E(κ, σ) arises due to imprimitivity issues. The condition σ(−1) = −ψ(−1)

arises from the fact that Hida only defined the function Lp(Sym2 F,ψ, κ, σ) on this half of weight

space (in this case, the integers 1 6 s 6 k − 1 are critical). With the proper generalization to

the other half, where the integers k 6 s 6 2k− 2 are critical, (7) should continue to hold. These

two halves of weight space correspond to the dichotomy between (4) and (5).

Let f be a p-ordinary newform and suppose that κ is an arithmetic weight with Fκ = f (or

the ordinary p-stabilization of f , if p does not divide the level of f). The functions in Theorem 1

are related to those in Theorem 2 by the formulae

Lp(Sym2 f ⊗ ψ, σ) := (∗)Lp(Sym2 F,ψ, κ, σ) (8)

and

Lp(f ⊗ f ⊗ ψ, σ) := (∗′)Lp(F, F, ψ, κ, κ, σ), (9)

4It is interesting to consider, however, the uniqueness of this construction if we allow weight k = 1, where the Hida
family F is not necessarily unique.
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where (∗) and (∗′) are certain Euler factors at the bad primes. On the half of weight space

satisfying σ(−1) = −ψ(−1), Theorem 1 follows from Theorem 2, (8), (9), and careful bookkeeping

of Euler factors at the bad primes. Theorem 1 is then deduced for the other half of weight space

when p - N by applying a functional equational for Lp(f ⊗ f ⊗ψ, σ). This functional equation is

proven in Section 9 using [LLZ, Prop 5.4.4].

We next state an application of our main theorem.

1.3 Greenberg’s exceptional zero conjecture for the adjoint at s = 0, 1

Let f ∈ Sk(Γ1(N), χ) be a cuspidal newform of level N and weight k > 2. Let p be a prime not

dividing N , and fix embeddings Q ⊂ C and Q ⊂ Cp. Suppose that f is ordinary at p.

As we now explain, for each i mod (p− 1), there is a p-adic L-function L
[i]
p (ad f, s), s ∈ Zp,

whose interpolation formula has the shape

L[i]
p (ad f, s) = (Euler Factor) · Lalg(ad f ⊗ ωs−i, s) (10)

for 2 − k 6 s 6 0, i even and 1 6 s 6 k − 1, i odd. Here Lalg(ad f, s) is the ratio between the

classical value L(ad f, s) and an appropriate period. In view of the relationship

ad f ∼= Sym2 f ⊗ χ−1ε1−k,

these functions can be defined in terms of the p-adic L-functions considered above by

L[i]
p (ad f, s) = L[i+k−1]

p (Sym2 f ⊗ χ−1, s+ k − 1).

When i = 0 or 1, the Euler factor in (10) vanishes at s = i, and hence L
[i]
p (ad f, i) is said to

have a “trivial” or “exceptional” zero at this point. Greenberg has stated a general conjecture

concerning the values of derivatives of p-adic L-functions at exceptional zeroes. To state this

conjecture in the current setting, we define the analytic L -invariant of ad f by

Lan(ad f, i) = (−1)1−i L
[i]
p

′
(ad f, i)

S(f) · Lalg(ad f, i)
∈ Cp, i = 0, 1, (11)

where S(f) ∈ Q is the nonzero part of the Euler factor in (10); see (35) below.

Greenberg has defined an algebraic counterpart to the L -invariant above. This is an in-

variant Lalg(ad f) arising from a certain cohomology class in H1(GQ, ad ρf ), where ρf is the

2-dimensional p-adic Galois representation attached to f by Deligne. We do not present the

precise definition, referring the reader instead to [Ha] or Greenberg’s original work [Gre].

Greenberg’s Conjecture. For i = 0, 1, we have

Lan(ad f, i) = Lalg(ad f). (12)

Let F denote the Hida family whose weight k specialization is the ordinary p-stabilization of

f . Inspired by the work of Greenberg and Stevens on the Mazur–Tate–Teitelbaum conjecture,

one defines the Greenberg–Stevens L -invariant of ad f by

LGS(ad f) = −
2a′p(k)

ap(k)
∈ Cp,

7
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where ap denotes the analytic function on Wk giving the Up-eigenvalue of F .

Theorem 3 (Hida [Hi4], Harron [Ha]). We have

Lalg(ad f) = LGS(ad f).

The following is a corollary of Theorem 1.

Theorem 4. For i = 0, 1, we have

Lan(ad f, i) = LGS(ad f),

and hence Greenberg’s Conjecture holds.

The fact that Theorem 4 follows from Theorem 1 was essentially proved by Citro [Ci], who

considered the case i = 1. We briefly recall Citro’s argument. Applying (4) with ψ = χ−1, i = k,

and s replaced by s+ k − 1, we obtain

L[k]
p (f ⊗ f ⊗ χ−1, s+ k − 1) = L[1]

p (ad f, s)ζp(s).

Taking leading terms and evaluating at s = 1, the fact that the p-adic zeta function has a

pole at s = 1 with residue (1− 1/p) yields

L[k]
p (f ⊗ f ⊗ χ−1, k) =

(
1− 1

p

)
L[1]
p

′
(ad f, 1). (13)

The evaluation of L
[k]
p (f ⊗ f ⊗ χ−1, k) follows from earlier work of Hida [Hi3, Theorem 5.1d’].

Suppose that Fk is the ordinary p-stabilization of f . Hida showed that after removal of the Euler

factor (1 − ap(Fκ)/ap(f)) in the interpolation property for Lp(F, F, χ
−1, κ, k, κ), the resulting

function of κ has a simple pole at κ = νk with residue

(1− 1/p)(∗) · Lalg(ad f, 1),

where as usual (*) denotes a fudge factor arising from imprimitivity and from factors appearing

in the interpolation formula. Note that the removed Euler factor (1− ap(Fκ)/ap(f)) has a zero

at κ = νk and its derivative at νk is 1
2LGS(ad f). Taking the limit as κ→ νk and combining these

results, one finds that

L[k]
p (f ⊗ f ⊗ χ−1, k) = LGS(ad f) · S(f)

(
1− 1

p

)
Lalg(ad f, 1), (14)

with S(f) as in (11) and (35). Equations (13) and (14) yield Theorem 4 for i = 1. The result

for i = 0 can be deduced from the case i = 1 by means of the functional equations proven in §9.

Details of these arguments are provided in §10.

Remark 1.5. Greenberg’s conjecture was proven for arbitrary symmetric powers of p-ordinary

CM forms f (when the corresponding L-functions have exceptional zeroes) by R. Harron in [Ha2].

Remark 1.6. It is also possible for Lp(Sym2 f, s) to have a trivial zero at s = k when p divides

the level of f . Greenberg’s conjecture was proven in this case under certain hypotheses (even over

arbitrary totally real fields F ) by G. Rosso [Ros2], generalizing unpublished work of Greenberg

and Tilouine.
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We conclude the introduction by outlining the proof of Theorem 1.

1.4 Outline of proof of Factorization Theorem

Let F be a Hida family, with notation as in §1.1. Let us write χ for χF . Let α and β denote

Dirichlet characters of p-power conductor such that β has the same parity as ψ and ν2,α ∈ Wk0

(so in particular α has the same parity as χ). The set of points (κ, σ) of the form κ = ν2,α and

σ = ν1,β or σ = ν2,β form a dense subset ofWk0×W in the rigid topology, and hence it suffices to

prove equality (7) under these specializations. (Note that this remains true if we remove finitely

many α and β.) In this paper we consider σ of the first form, σ = ν1,β, which introduces the

condition σ(−1) = −ψ(−1) noted above. The formula we would like to prove is then

Lp(F, F, ψ, ν2,α, ν2,α, ν1,β) = E(κ, σ)Lp(Sym2 F, ν2,α, ψ, ν1,β)Lp((χψ)−1, ν1,αβ−1). (15)

The right side of (15) is easily computed. Let K be the real cyclotomic field cut out by the

even character η := χψαβ−1. Leopoldt proved that the value of Lp((χψ)−1, ν1,αβ−1), which in

the classical notation is Lp(η
−1, 1), is equal (up to an explicit algebraic constant) to logp(uη).

Here uη is a circular unit

uη ∈ Uη := (O∗K ⊗Q)η
−1
, (16)

and logp denotes the p-adic logarithm extended by linearity to Uη. In (16), the superscript

indicates that the element uη lies in the η−1-component for the action of Galois. The equivariant

form of Dirichlet’s unit theorem implies that Uη is a vector space of dimension 1 over Q.

Meanwhile σ = ν1,β is a critical value for Lp(Sym2 F, ν2,α, ψ, σ). Hence the value of this

function is equal, up to various interpolation factors, to the algebraic part of the classical L-

value L(Sym2 f, β−1, 1), denoted

Lalg(Sym2 f, β−1, 1) =
L(Sym2 f, β−1, 1)

period
.

Here f = F2,α, a classical cusp form of weight 2 and character χα.

The difficulty in proving (15) is in evaluating the left side. In Section 7, we define an element

bf,ψ,β ∈ Uη using intersection theory of algebraic cycles on the product of two modular curves.

Our construction is inspired by the work of Beilinson [Bei] and Flach [Fl] but draws more directly

from recent work of Lei, Loeffler, and Zerbes [LLZ] (which in turn was inspired by the work of

Bertolini, Darmon, and Rotger [BDR1]); we call bf,ψ,β a Beilinson-Flach unit.

We prove that

Lp(f, f, ψ, ν2,β) = logp(bf,ψ,β) (17)

by combining a formula for Lp(f, f, ψ, ν2,β) proven in [KLZ] with a general compatibility result

relating the p-adic regulator, cycle class map, and intersection pairing. By the linearity of logp,

the proof of (15) is then reduced to proving that5

bf,ψ,β ≈ Lalg(Sym2 f, β−1, 1) · uη (18)

5Our notation here suffers from the usual dilemma when tensoring a multiplicative group with an additive group as
in the definition of Uη. Instead of writing bf,ξ = C · uη, a more enlightening notation would perhaps be bf,ξ = uCη .
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in the Q-vector space Uη. Here ≈ denotes equality up to multiplication by a specific nonzero

algebraic factor that we suppress here for simplicity.

Equation (18) is proved by evaluating the leading terms at s = 1 of the factorization of

classical L-series (2):

L′(f ⊗ f ⊗ ψβ−1, 1) = L(Sym2 f ⊗ ψβ−1, 1)L′(η, 0). (19)

Dirichlet’s class number formula states that L′(η, 0) = −1
2 log∞ uη, where log∞ is the Q-linear

extension of the usual logarithm of the complex absolute value on O∗K . Meanwhile, we prove that

L′(f ⊗ f ⊗ ψβ−1, 1)

period
≈ log∞ bf,ψ,β (20)

by combining the Beilinson regulator formula of [LLZ] with a general compatibility result relating

the archimedean regulator, cycle class map, and intersection pairing.

Equations (19) and (20) imply that

log∞ bf,β ≈ Lalg(Sym2 f ⊗ β−1, 1) · log∞ uη. (21)

Since Uη is a 1-dimensional Q-vector space on which log∞ is injective, equation (21) implies (18),

and completes the proof of Theorem 1.

Remark 1.7. The debt this article owes to the work of Bertolini, Darmon, and Rotger (in

particular the articles [BDR1] and [BDR2]) is clear. We refer the reader to [BCDDPR, §2.4],

where this article is placed in the larger context of the Bertolini–Darmon–Rotger program on

Euler systems.

2. Classical L-series

We recall various classical L-series that play a role in this paper.

2.1 Dirichlet L-series

Let χ denote a primitive Dirichlet character. Its associated L-series

L(χ, s) =

∞∑
n=1

χ(n)n−s =
∏
p

(1− χ(p)p−s)−1, Re(s) > 1,

can be analytically continued to the entire complex plane. The function L(χ, s) is holomorphic

unless χ = 1, in which case L(1, s) = ζ(s) has a simple pole at s = 1 with residue 1. We denote

by LN (χ, s) the L-series obtained from L(χ, s) by excluding the Euler factors at primes dividing

N . (This should not cause confusion with the p-adic L-functions Lp to appear later.)

The critical values of L(χ, s) are the integers s 6 0 with χ(−1) = (−1)s+1 and integers s > 0

with χ(−1) = (−1)s. The values of L(χ, s) for critical s 6 0 are algebraic, and in fact live in the

field Q(χ) generated by the values of the character χ.

10
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2.2 Symmetric square L-series

Let f =
∑∞

n=1 ane
2πinz ∈ Sk(Γ1(N), χ) denote a normalized eigenform (so a1 = 1, and f is an

eigenform for the operators T`, ` - N and U`, ` | N). For any prime ` - N , let ρf,` : GQ → Aut(V`)

denote the 2-dimensional `-adic representation associated to f by Deligne. The symmetric square

Sym2 ρf,` is a 3-dimensional representation of GQ. Let ψ : GQ −→ Q
×

be a primitive Dirichlet

character of conductor Nψ. For any prime q 6= `, we let

Zq(Sym2 f ⊗ ψ,X) := det(1− FrobqX|((Sym2 ρf,`)⊗ ψ)Iq),

where Iq ⊂ GQ is an inertia group at q. The polynomial Zq(X) has coefficients in Q(χ) and is

independent of ` or the choice of Iq. We define the primitive L-series

L(Sym2 f ⊗ ψ, s) =
∏
q

Zq(Sym2 f ⊗ ψ, q−s)−1. (22)

If q - N , the Euler factor at q in (22) is

[(1− α2
qψ(q)q−s)(1− χψ(q)qk−1−s)(1− β2

qψ(q)q−s)]−1,

where αq and βq are the roots of the Hecke polynomial x2 − aqx+ χ(q)qk−1 of f at q.

We also consider the imprimitive L-series defined by

L(Sym2 f, ψ, s) := LNNψ(2s− 2k + 2, χ2ψ2)
∞∑
n=1

ψ(n)an2n−s.

If we extend the definition of (αq, βq) by setting

(αq, βq) = (aq, 0) when q | N, (23)

then we have

L(Sym2 f, ψ, s) =
∏
q

[(1− α2
qψ(q)q−s)(1− αqβqψ(q)qk−1−s)(1− β2

qψ(q)q−s)]−1.

For primes q - N , the Euler factors of L(Sym2 f, ψ, s) and L(Sym2 f ⊗ψ, s) agree. For q | N , the

Euler factors of L(Sym2 f, ψ, s) divide those of L(Sym2 f ⊗ ψ, s). In other words, we may write

L(Sym2 f, ψ, s) = L(Sym2 f ⊗ ψ, s) · P (Sym2 f, ψ, s),

where

P (Sym2 f, ψ, s) =
∏
q|N

Pq(Sym2 f, ψ, q−s) (24)

and Pq(Sym2 f, ψ, x) is a polynomial of degree at most 3 in x. For details on the exact evaluation

of these polynomials, see [Sc].

2.3 Rankin L-series

Now consider two normalized eigenforms:

f =

∞∑
n=1

ane
2πinz ∈ Sk(Γ1(Nf ), χf ), g =

∞∑
n=1

bne
2πinz ∈ S`(Γ1(Ng), χg).

11
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Let ψ be a primitive Dirichlet character of conductor Nψ. Let ` - N := lcm(Nf , Ng, Nψ); for any

prime q 6= `, put

Zq(f ⊗ g ⊗ ψ,X) := det(1− FrobqX|(ρf,` ⊗ ρg,` ⊗ ψ)Iq).

The polynomial Zq(f ⊗ g ⊗ ψ,X) is independent of `, and we define the primitive L-series

L(f ⊗ g ⊗ ψ, s) :=
∏
q

Zq(f ⊗ g ⊗ ψ, q−s)−1.

Meanwhile, the (imprimitive) Rankin L-series of f and g twisted by ψ is defined by

DN (f, g, ψ, s) = LN (χfχgψ
2, 2s+ 2− k − `)

∞∑
n=1

anbnψ(n)n−s,

which under the convention (23) has the Euler product∏
q

[(1− αq(f)αq(g)ψ(q)q−s)(1− αq(f)βq(g)ψ(q)q−s)

(1− βq(f)αq(g)ψ(q)q−s)(1− βq(f)βq(g)ψ(q)q−s)]−1.

For q - NfNg, the Euler factors of L(f ⊗ g ⊗ ψ, s) and DN (f, g, ψ, s) agree, and we may write

DN (f, g, ψ, s) = L(f ⊗ g ⊗ ψ, s)P (f, g, ψ, s)

where

P (f, g, ψ, s) =
∏

q|NfNg

Pq(f, g, ψ, q
−s) (25)

and Pq(f, g, ψ, x) is a polynomial of degree at most 4 in x.

When f = g, we have L(f ⊗ g ⊗ ψ, s) = L(Sym2 f ⊗ ψ, s)L(χψ, s− k + 1). Furthermore, the

Euler factors of the imprimitive L(Sym2 f, ψ, s) and DN (f, f, ψ, s) agree for all q | N . The error

terms defined in (24) and (25) are therefore related by

P (f, f, ψ, s) = P (Sym2 f, ψ, s)
∏
q|N

(1− χψ(q)qk−1−s),

with the understanding that χψ(q) denotes the primitive character associated to χψ evaluated

at q (hence we may have χψ(q) 6= 0 even if χ(q) = 0 or ψ(q) = 0).

3. p-adic L-series

For clarity we present p-adic L-functions both as functions on weight spaceW and more classically

as functions of a variable s ∈ Zp.

3.1 Kubota-Leopoldt p-adic L-series

Let p be a prime number, and fix once and for all embeddings Q ↪→ C and Q ↪→ Cp. Suppose

that the Dirichlet character χ is even. Kubota and Leopoldt proved the existence of a unique

p-adic meromorphic function

Lp(χ, s) : Zp −→ Qp(χ)

12
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such that

Lp(χ, n) = L(χωn−1, n)E(χωn−1, n) for integer n 6 0, (26)

where ω : (Z/pZ)∗ −→ µp−1 is the Teichmuller character (or ω : (Z/4Z)∗ −→ {±1} if p = 2),

and E(χωn−1, n) = 1− χωn−1(p)p−n is the Euler factor at p of the given L-function. The p-adic

L-series Lp(χ, s) is analytic unless χ = 1, in which case Lp(1, s) = ζp(s) has a simple pole at

s = 1 with residue (1− p−1).

Let us now describe how the Kubotda–Leopoldt p-adic L-series may be viewed as a function on

weight space. We suppose that χ has conductor prime to p. (This is no restriction, since the p-part

of the character may be absorbed into the weight.) We no longer insist that χ is even and define

aχ ∈ {0, 1} by (−1)aχ = χ(−1). There is a unique meromorphic function Lp(χ, σ) : W −→ Cp

such that for arithmetic weights σ = νs,α, we have

Lp(χ, σ) = L(χα−1, s)E(χα−1, s) (27)

if χα(−1) = (−1)s+1 and s 6 0 and

Lp(χ, σ) = L(χα−1, s) · 2Γ(s)iaχ

(2πi)s
· χ(Nα)τ(α−1)

N s
α

E(χ−1α, 1− s) (28)

if χα(−1) = (−1)s and s > 1. Here τ(α) is the Gauss sum

τ(α) =

Nα∑
n=1

α(n) exp(2πin/Nα). (29)

The function Lp is analytic unless χ = 1, in which case Lp(1, σ) = ζp(σ) has a simple poles

at σ(z) = z and σ(z) = 1. Comparing (26) and (27), we see that for any p-power conductor

Dirichlet character α such that χα is odd, we have

Lp(χ, α〈z〉s) = Lp(χα
−1ω, s), s ∈ Zp. (30)

Remark 3.1. For most of the paper, we will be concerned with the half of weight space on which

χ(−1) = −σ(−1), where the formulae (27) and (30) hold. As explained in the next section, the

constants in (28) have been chosen so that there is a functional equation relating Lp(χ, σ) and

Lp(χ
−1, ν1/σ) mirroring the classical functional equation relating L(χ, s) and L(χ−1, 1−s). Note

that our normalization differs slightly from that of Colmez in [Col]; the functional equation of

our Lp(χ, σ) involves the same epsilon factor as the classical L(χ, s).

3.2 Functional Equation

Recall the standard notation

ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s).

Let χ be a Dirichlet character of conductor Nχ. Let aχ ∈ {0, 1} such that χ(−1) = (−1)aχ .

Define

Λ(χ, s) = ΓR(s+ aχ)L(χ, s).

The following functional equational is well-known.
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Theorem 3.2. Let

ε(χ, s) =
iaχ

τ(χ−1)
N s
χ.

We have

Λ(χ, 1− s) = ε(χ, s)Λ(χ−1, s).

Suppose that p - Nχ. Denote by

ε̃(χ, σ) =
iaχ

τ(χ−1)
σ(Nχ)

the unique analytic function on W such that ε̃(χ, νs) = ε(χ, s) for s ∈ Z.

Theorem 3.3. We have

Lp(χ, ν1/σ) = ε̃(χ, σ)Lp(χ
−1, σ).

Proof. To prove the result on the half of weight space such that σ(−1) = −χ(−1), it suffices to

consider the dense set of points of the form σ = νs where χ(−1) = (−1)s+1 and s 6 0. By (27)

and (28) we see that the right hand side equals ε(χ, s)L(χ−1, s)E(χ−1, s) and the left hand side

equals L(χ, 1 − s)E(χ−1, s) · 2(−s)!iaχ/(2πi)1−s. These are equal by Theorem 3.2 and standard

formulae for the Gamma function.

To deduce the result on the half of weight space such that σ(−1) = −χ(−1), one enacts the

change of variables σ 7→ ν1/σ, noting that ε̃(χ, σ)ε̃(χ−1, ν1/σ) = 1.

3.3 Schmidt’s p-adic Symmetric Square L-series

Theorem 3.4 (Schmidt, [Sc], Theorem 5.5). Let f be a p-ordinary cuspidal newform with weight

k > 2, character χ, and level Nf . Let ψ be a Dirichlet character of conductor Nψ. Suppose that

p - NfNψ. There exists a unique meromorphic function Lp(Sym2 f ⊗ ψ, σ) : W → Cp such that

for all but finitely many characters β of conductor pr, r > 0, we have

Lp(Sym2 f ⊗ ψ, νβ,s) =
(−1)s−k+1β(−1)Γ(s)

iaχψ22k
(α−2

p ψ−1(p)ps−1)r
τ(β)

(2πi)s−k+1

L(Sym2 f ⊗ ψβ−1, s)

πk−1〈f, f〉
(31)

if 1 6 s 6 k − 1 and ψβ(−1) = (−1)s+1, and

Lp(Sym2 f⊗ψ, νβ,s) =
Γ(s− k + 1)Γ(s)

22s+1
(α−2

p χ−1ψ−2(p)ps−1)rβ(Nψχ)2τ(β)2L(Sym2 f ⊗ ψβ−1, s)

π2s−k+1〈f, f〉
(32)

if k 6 s 6 2k − 2 and ψβ(−1) = (−1)s.

Proof. In the notation of [Sc, Theorem 5.5], our function Lp(Sym2 f ⊗ ψ, σ) is given by

Lp(Sym2 f ⊗ ψ, σ) =
Cψ−1χ−1(σ/νk−1) ·Nk−1

ψχ

iaχψ22kτ(ψ−1χ−1)σ(−Nψχ)
(33)

if σ(−1) = −ψ(−1) and

Lp(Sym2 f ⊗ ψ, σ) =
Cψ−1χ−1(σ/νk−1) ·N2k−1

ψχ

τ(ψ−1χ−1)222kσ(N2
ψχ)(−1)k−1

(34)
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if σ(−1) = ψ(−1). The interpolation properties (31) and (32) then follow directly from [Sc,

Theorem 5.5(ii)], keeping in mind the sign error in the definition ofQm,λ for 1 6 m 6 k−1 pointed

out in [Hi2, pg. 134] (and the corresponding correction that must be made for k 6 m 6 2k − 1,

multiplying Qm,λ by (−1)m−k for m in that range).

As we discuss in §3.5, Schmidt’s result was generalized by Hida to allow f to vary in a

p-ordinary family. By specializing to general forms in the family, one obtains a definition of

Lp(Sym2 f ⊗ ψ, σ) even in the case p | Nf . For most of the paper, where we work on the half

of weight space satisfying σ(−1) = −ψ(−1), we use Hida’s more general construction. However

in Section 9 we will appeal to Schmidt’s functional equation for Lp(Sym2 f ⊗ ψ, σ) in order to

deduce our factorization theorem on the other half of weight space when p - Nf .

Remark 3.5. The reason that we have scaled Schmidt’s p-adic L-function by the factors in (33)

and (34) is that our function is more closely aligned with the standard classical completed L-

function Λ(Sym2 f⊗ψ, s). For example, the epsilon factor appearing in the functional equation of

our Lp(Sym2 f ⊗ψ, σ) is exactly the p-adic function that interpolates the classical epsilon factor

for integer s (see §9). Retaining this convention for all our p-adic L-functions is quite natural

and will simplify later proofs.

3.4 Hida Families

Let p > 5 be prime, and let N be a positive integer such that p - N . Let O denote the ring of

integers in a finite extension of Qp, and let

Λ = O[[(1 + pZp)
∗]] ∼= O[[T ]].

Let Spec R̃ denote an irreducible component of Hida’s ordinary Hecke algebra of tame level N

defined over O, and let R denote the integral closure of R̃ in its quotient field. Thus R is a finite

flat extension of Λ such that R ∩Qp = O.

The Hida family associated to R is the formal q-expansion F =
∑∞

n=1 anq
n where an ∈ R is

the image in R of the Hecke operator Tn; in particular a1 = 1. There exists an even Dirichlet

character ψF with modulus Np such that the Hida family F satisfies the following interpolation

property. Let κ ∈ HomO−alg(R,Cp) be such that the restriction to group-like elements [x] ∈ Λ

for x ∈ (1 + pZp)
∗ has the form x 7→ α(x)xk, where k > 2 is an integer and α has p-power

conductor and order pr−1. Then the values κ(an) lie in Q and

Fκ :=
∞∑
n=1

κ(an)qn ∈ C[[q]]

is the q-expansion of a p-ordinary eigenform in Sk(Np
r, ψFαω

−k).

Let ψF = χFω
k0 denote the factorization of ψF into characters of modulus N and p, where

k0 is an integer determined modulo (p − 1). An O-algebra homomorphism κ as above is called

an arithmetic point of R. The associated element ν(κ) = νk,αωk0−k ∈ W is called the weight of

κ and lies in the connected component Wk0 ⊂ W containing the integer k0. More generally, any

κ ∈ HomO−alg(R,Cp) defines an element ofWk0 , denoted ν(κ), via x 7→ ωk0(x)κ(〈x〉) for x ∈ Z∗p.
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In this way, HomO−alg(R,Cp) defines (the set of Cp-points of) a rigid analytic space WF that is

a finite cover of Wk0 . In the introduction, we assumed that WF =Wk0 for simplicity.

3.5 Hida’s p-adic Symmetric Square L-series

Let F be a Hida family and ψ an auxiliary Dirichlet character of conductor Nψ (p - Nψ). In

[Hi2], Hida defined a p-adic L-function Lp(Sym2 F,ψ, κ, σ) for κ ∈ WF and σ ∈ W interpolating

the classical critical L-values L(Sym2 Fk,α, ψβ
−1, s) when ν(κ) = νk,α, σ = νs,β such that 1 6

s 6 k − 1. These values are critical when σ(−1) = −ψ(−1).

In this paper, we scale Hida’s function in [Hi2] by

−ψ(−1)Nψ(W ′(Fκ)Nk/2)

4iaχF ψσ(Nψ)τ(ψ−1)

to align more closely with our normalization. Here W ′(f) denotes the prime-to-p part of the root

number of f (see [Hi3, pp.38–39]); the function W ′(Fκ)Nk/2 extends to an analytic function on

WF .

We state the precise interpolation formula when cond(β) = pw with w > 1. Let cond(α) = pr.

Let ξ = ψβ−1. Let f = Fκ. If f is a not a newform, we write f# for the associated newform (so

f is the ordinary p-stabilization of f#); if f is a newform, we write f# = f . Define S(f) = 1 if

α 6= 1, S(f) = −1 if α = 1 and f# = f (this can only happen if k = 2), and

S(f) := (1− χF (p)αp(f)−2pk−1)(1− χF (p)αp(f)−2pk−2) (35)

if α = 1 and f 6= f# . We then have:

Theorem 3.6 (Hida, [Hi2], Theorem 5.1d). There is a unique p-adic meromorphic function

Lp(Sym2 F,ψ, κ, σ) on WF ×W such that for (κ, σ) satisfying the conditions above, we have:

Lp(Sym2 F,ψ, κ, σ) =
−ψ(−1)

4iaχF ψ
· Γ(s)pw(s−1)ap(f)2r−2wτ(β)ψ(p)−w

χF (p)rτ(α)S(f)
· L(Sym2 f#, ξ, s)

(2i)s+k−1πs〈f#, f#〉
∈ Q.

(36)

We will essentially define the p-adic L-function of f to be the specialization of Hida’s 2-

variable function at κ, with two adjustments: (1) we would like to interpolate the primitive

values L(Sym2 f), so an adjustment must be made at primes dividing Nf ; (2) we scale the

function according to our prior conventions, so that in particular in the case where p - Nf , we

recover the function defined in Theorem 3.4.

To this end, we define the Euler factor

P (Sym2 f, ψ, σ) =
∏
q|Nf

Pq(Sym2 f, ψ, σ(q)−1)

with notation as in (24). For σ ∈ W such that σ(−1) = −ψ(−1), we define (for a newform f

such that Fκ = f or Fκ = ordinary p-stabilization of f)

Lp(Sym2 f ⊗ ψ, σ) = S(f) · Lp(Sym2 F,ψ, κ, σ)

P (Sym2 f, ψ, σ)
. (37)
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It is a straightforward calculation to verify that this definition of Lp(Sym2 f ⊗ ψ, σ) agrees

with that of Schmidt from Theorem 3.4 when p - Nf (in which case we have in particular α = 1).

3.6 p-adic Rankin L-series

Let F and G be Hida families of tame level NF , NG, respectively. Let N = lcm(NF , NG). Hida

has defined a 3-variable p-adic L-function Lp(F,G, κ, λ, σ) interpolating the algebraic parts of

the critical values DNpr(Fκ, Gλ, σ), for appropriately chosen r. Let Fκ and Gλ be specializations

at arithmetic points of weight k > ` > 2, respectively, such that Fκ and Gλ have trivial character

at p. Then Fκ and Gλ are the ordinary p-stabilizations of forms f and g of level NF and NG,

respectively (with the possible exception of g if ` = 2; we exclude this case in what follows).

Then for ` 6 s 6 k − 1, Hida’s function satisfies the following interpolation formula (see [KLZ,

Theorem 2.6.2]).

Theorem 3.7 (Hida, [Hi3]). There exists a unique p-adic meromorphic function Lp(F,G, κ, λ, ν)

on WF ×WG ×W such that for (κ, λ, νs) satisfying the conditions above, we have:

Lp(F,G, κ, λ, νs) =
E(f, g, s)

S(f)
· Γ(s)Γ(s− `+ 1)

π2s−`+1(−i)k−`22s+k−`〈f, f〉N
DN (f, g, s) (38)

where

E(f, g, s) =

(
1− ps−1

αfαg

)(
1− ps−1

αfβg

)(
1−

βfαg
ps

)(
1−

βfβg
ps

)
.

Here αf = ap(Fκ) denotes the p-adic unit root of the Hecke polynomial of f at p, and

βf = χF (p)pk−1/αf denotes the other root; similarly for αg, βg. Equation (38) specifies Lp on a

dense collection of points in WF ×WG ×W.

Now let ψ be an auxiliary Dirichlet character of conductor Nψ, with p - Nψ. f = Fκ and

g = Gλ be specializations of F,G at arithmetic points (not necessarily satisfying the condition

above of having trivial character at p). Denote by Gψ the twist of the Hida family G by the

character ψ. We define

Lp(f ⊗ g ⊗ ψ, σ) := S(f) ·
Lp(F,Gψ, κ, λ, σ)

P (f, g, ψ, σ)
(39)

with

P (f, g, ψ, σ) :=
∏

q|NFNG

Pq(f, g, ψ, σ(q)−1),

where Pq is as in (25) and S(f) as in (35). Note that unlike the setting of the symmetric square,

in the case k 6 ` the function Lp(f ⊗g⊗ψ, σ) is not characterized by any interpolation property

in the variable σ, as there are no critical values; it may only be defined by specializing the

3-variable function Lp(F,G). Note also the asymmetry between F and G in the definition of

Lp(F,G), implying that the functions Lp(f ⊗ g ⊗ ψ) and Lp(g ⊗ f ⊗ ψ) may not be equal.
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4. Circular units

We recall special value formulae for classical and p-adic Dirichlet L-series in terms of circular

units.

4.1 Definition of circular units

Let χ be a nontrivial primitive even Dirichlet character with conductor N . Let K = Q(µN ), and

define

Uχ := {x ∈ O∗K ⊗Q Q : σ(x) = χ−1(σ) · x for σ ∈ Gal(K/Q)}.

This is a Q-vector space of dimension 1.

Fix the primitive Nth root of unity ζ ∈ µN given by ζ = e2πi/N . (Recall that we have chosen

an embedding Q ⊂ C, so we may view ζ as a well-defined element of K.) Define the circular unit

uχ :=
∏

16a6N,(a,N)=1

(
1− ζa

1− ζ

)
⊗ χ(a) ∈ Uχ.

4.2 Dirichlet’s formula

Consider the group homomorphism log∞ : O∗K −→ R obtained by composing the embedding

O∗K ⊂ C with the map x 7→ log |x|, where |x| denotes the usual complex absolute value. The

map log∞ can be extended by linearity to a Q-linear map

log∞ : O∗K ⊗Q −→ C.

The following is a special case of Dirichlet’s celebrated class number formula:

L′(χ, 0) = −1

2
log∞(uχ), L(χ−1, 1) = −τ(χ−1)

N
log∞(uχ). (40)

Here τ(χ) is the Gauss sum defined in (29).

4.3 Leopoldt’s formula

Let Op ⊂ Qp denote the ring of p-adic integers, and let logp : O∗p −→ Op denote the p-adic

logarithm. The group homomorphism logp can be extended by linearity to a Q-linear map

logp : O∗K ⊗Q −→ Qp.

Leopoldt proved the following p-adic analogue of Dirichlet’s class number formula:

Lp(χ
−1, 1) = −τ(χ−1)

N

(
1− χ−1(p)

p

)
logp(uχ). (41)

In particular, if the conductor N of χ is divisible by p, we obtain

Lp(χ
−1, 1) = −τ(χ−1)

N
logp(uχ). (42)
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5. Chow groups

The Beilinson–Flach units that we will construct in Section 7 and relate to classical and p-adic

Rankin L-series will be defined using Bloch’s intersection theory on higher Chow groups. In this

section we recall the basics of this theory that we will require, and prove compatibility results

relating an intersection pairing and regulator maps. Our discussion of Chow groups is by no

means complete, and we refer the reader to [Bl1] and [Le] for more details.

5.1 Definition of Chow groups

Let S be a smooth projective variety of dimension d over a field K. We recall the definitions of

CHr(S) and CHr(S, 1). Let zr(S) denote the free abelian group on the set of irreducible varieties

Z ⊂ S of codimension r. Let zrrat(S) ⊂ zr(S) denote the subgroup of cycles rationally equivalent

to zero (i.e. for which there exists a subvariety Y ⊂ S and a rational function on Y whose divisor

is the given cycle). We have CHr(S) := zr(S)/zrrat(S).

For a nonnegative integer r, let Sr denote the set of points of S of codimension r. The higher

Chow group CHr+1(S, 1) is isomorphic to the cohomology of the Gersten complex⊕
x∈Sr−1

K2(k(x)) −→
⊕
x∈Sr

k(x)∗ −→
⊕

x∈Sr+1

Z. (43)

(see e.g. [La, Theorem 2.5]).

Here the second map simply sends a rational function to its divisor. The first map sends a

symbol {f, g} ∈ K2(k(x)) associated to pair of functions f, g ∈ k(x)∗ with x ∈ Sr−1 to the tame

symbol

T ({f, g}) = (uZ)Z∈Sr , uZ = (−1)νZ(f)νZ(g) f
νZ(g)

gνZ(f)
. (44)

5.2 An intersection pairing

There is a natural pairing 〈 , 〉 : CHr+1(S, 1)× CHd−r(S)→ K∗ defined by

〈[(uZ)Z ], [Y ]〉 =
∏

uZ(Z ∩ Y ), (45)

where the representatives are chosen so that Y intersects each Z properly and avoids the zeros and

poles of the uZ . The fact that this pairing is well-defined is easily verified using Weil reciprocity.

We now give another description of this map that was first explained to us by G. Kings. It

is known that there is an isomorphism between Bloch’s higher Chow groups and the motivic

cohomology groups:

CHd(S, r) ∼= H2d−r
mot (S, d).

Let π : S → SpecK be the structure map. Our pairing is the composition

H2r+1
mot (S, r + 1) ∪H2d−2r

mot (S, d− r)→ H2d+1
mot (S, d+ 1)

π∗−→ H1
mot(SpecK, 1) ∼= K∗,

where the first arrow is the cup product on motivic cohomology and the second arrow is the push

forward under π.
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5.3 The Beilinson Regulator

Now let us specialize to K = C and d = dimS = 2. Beilinson defined a regulator map

regC : CH2(S, 1) −→ H1,1(S,R)∨

by

regC ([(uZ)]) (ω) =
1

2πi

∑∫
Z

log |uZ | · ω. (46)

(Here and throughout, integration on complex manifolds is taken in the i-oriented sense for a

fixed choice of i =
√
−1 ∈ C, so that the right side of (46) becomes independent of this choice.)

It is an elementary and pleasant calculation using Stokes’ Theorem to verify that the definition

of regC depends only on the image of ω in H1,1(S,R) and that the regulator is well-defined on

CH2(S, 1) on the left (see [Le]).

5.4 The cycle class map and a compatibility result

Denote by

clC : CH1(S)→ H1,1(S,R)

the complex de Rham cycle class map, which sends a cycle to the class of two-forms associated

by Poincaré duality. In other words, clC(Y ) is specified by the property

− 1

2πi

∫
Z

clC(Y ) = #(Z ∩ Y ) (47)

for each [Z] ∈ H2(S,Z) represented by a cycle Z that intersects Y properly.

Remark 5.1. It is known (see, for instance [Con]) that the period −1/2πi must be included

when using i-oriented integration in the definition of the Poincaré pairing:

(ω1, ω2)dR,C = − 1

2πi

∫
X
ω1 ∧ ω2

in order to be compatible with the algebraic Poincaré pairing defined on H1
dR(X) by cup product

and the de Rham trace: trdR : H2
dR(X) → C. Since we will use this algebraic manifestation of

the Poincaré pairing in §7 in conjunction with the present computaiton, it is essential to include

the factor −1/2πi in (47) above.

The following theorem will allow us to reinterpret regulator formulae for Rankin L-series of

tensor squares in terms of logarithms of units.

Theorem 5.2. The following diagram commutes.

CH2(S, 1)× CH1(S)

clC
��

〈 , 〉 // C∗

− log | |
��

CH2(S, 1)×H1,1(S,R)
regC // R

Proof. It is possible to give a direct proof of this result using the explicit description of the

regulator map given above. For this, the key fact is that the pairing regC depends only on the
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class of the form ω in H1,1. Therefore we can choose a form ω representing the class clC(Y ) for

which the desired formula becomes “obvious”; more precisely, we can choose for each ε > 0 a

representing class ωε such that the value of regC is easily seen to be within ε of the desired one.

However, with a view towards generalizations and future applications, rather than explain

the details of this explicit argument we give here a more abstract proof suggested by the referee.

Our result expresses nothing but the compatibility of the Beiliinson regulator with cup product

and push-forward. Namely, for each d and r there is a regulator map

rD : Hd
mot(S, r)→ Hd

D(S, r),

where Hd
D(S, r) denotes Deligne cohomology (see [Bl1] or [DS, §2]). For (d, r) = (3, 2), there is a

canonical map

H3
D(S, 2)→ H1,1(S,R) ∼= H1,1(S,R)∨,

where the last isomorphism is Poincaré duality, and the composition of this map with the regu-

lator rD is precisely the map we have denoted regC. For (d, r) = (2, 1), there is a canonical map

H2
D(S, 1)→ H1,1(S,R), and the composition of this map with rD is the cycle class map (see [EV,

§7]). For (d, r) = (5, 3), we have a canonical map H5
D(S, 3) → H2,2(S,R), and the cup product

H3
D(S, 2)×H2

D(S, 1)→ H5
D(S, 3) is compatible with the usual cup product on differential forms.

Finally, we have H1
D(Spec C, 1) = R, and the push-forward map H5

D(S, 3) → R is integration

over S(C).

In other words, the commutativity of our diagram follows from that of:

H3
mot(S, 2)×H2

mot(S, 1)

rD
��

rD
��

∪ // H5
mot(S, 3)

π∗ //

rD
��

H1
mot(Spec C, 1) = C∗

rD=− log | |
��

H3
D(S, 2)×H2

D(S, 1)

�� ��

∪ // H5
D(S, 3)

��

π∗ // H1
D(Spec C, 1) = R

H1,1(S,R)×H1,1(S,R)
∪ // H2,2(S,R)

π∗=
∫

// R.

(48)

The commutativity of the above diagram—i.e., the compatibility of the Beilinson regulator rD

with cup product and proper push-forward—is well-known; for instance, for the cup product see

[Nek].

5.5 The étale regulator

Let us retain the assumption that S is a smooth projective surface over a field K. We now

consider the setting where K is a finite extension of Qp.

Recall that there is an étale cycle class map

clét : CHr(S) −→ H2r
ét (S,Qp(r)) −→ H2r

ét (S,Qp(r))
GK .

The étale regulator is defined in terms of Bloch’s generalization of the étale cycle class map to
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higher Chow groups (see [Bl1], [Bl2])

clét : CHr(S, 1) −→ H2r−1
ét (S,Qp(r + 1)),

as follows. Let N1 CHr(S, 1) ⊂ CHr(S, 1) denote the subspace of elements whose image under

the cycle class map clét lies in

N1H2r−1
ét (S,Qp(r)) := ker(H2r−1

ét (S,Qp(r)) −→ H2r−1
ét (S,Qp(r))

GK ).

For a smooth proper surface S over a p-adic field K we have H3
ét(S,Qp(2))GK = 0 and hence

N1 CH2(S, 1) = CH2(S, 1) (see for instance the proof of [CTR, Theorem 6.1] or [SS, §3.1]).

Consider the Leray spectral sequence

Ep,q2 = Hp(K,Hq
ét(S,Qp(r))) =⇒ Hp+q

ét (S,Qp(r)). (49)

From this spectral sequence, we extract a map

δr : N1H2r−1
ét (S,Qp(r)) −→ E1,2r−2

∞ ⊂ E1,2r−2
2 = H1(K,H2r−2

ét (S,Qp(r))).

The étale regulator is defined by

regét = δr ◦ clét : N1 CHr(S, 1) −→ H1(K,H2r−2
ét (S,Qp(r))).

The following is the analog of (48) in the étale context.

Proposition 5.3. Let S be a smooth proper surface over a finite extension K/Qp. The following

diagram commutes:

CH2(S, 1)× CH1(S)

regét

��
clét

��

∪ // CH3(S, 1)
π∗ //

regét

��

CH1(SpecK, 1) = K∗

regét=δKum

��
H1(K,H2

ét(S,Qp(2)))×H2
ét(S,Qp(1))GK

∪ // H1(K,H4
ét(S,Qp(3)))

π∗=(trét)∗ // H1(K,Qp(1)),

(50)

where

δKum : (lim
←
K∗/(K∗)p

n
)⊗Q −→ H1(K,Qp(1))

is the usual connecting homomorphism in Kummer Theory and (trét)∗ is the map induced by

the étale trace

trét : H4
ét(S,Qp(2))

∼−→ Qp.

Proof. The commutativity of the left square expresses the compatibility of the étale regulator

with cup product, which we now briefly explain.6 If w ∈ CHr(S, 1) and z ∈ CHm(S), then by

[GL, Proposition 4.7] we have

clét(w ∪ z) = clét(w) ∪ clét(z). (51)

Given elements a ∈ N1H2r−1
ét (S,Qp(r)) and b ∈ H2m

ét (S,Qp(m)) we have

δr(a) ∪ b′ = δr+m(a ∪ b), (52)

6This commutativity is well-known to the experts and appears in various forms in the literature (see for instance
[Hu, Corollary 2.3.4]), but we offer a short explanation here for the benefit of the reader.
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where b′ denotes the image of b in H2m
ét (S,Qp(m))GK . This follows from the fact that cup product

with b induces a morphism in the category of spectral sequences between the Leray spectral

sequences (49) for r and r +m (with a shift in degree of 2m), which on the E2 page is realized

by cup product with b′. The commutativity of the left square of (50) follows by combining (51)

and (52).

The commutativity of the right square of (50) expresses the compatibility of the étale regulator

with push-forward, which in this context is elementary. Elements of CH3(SK , 1) are generated

by those of the form w ∪ z where w ∈ L∗ = CH1(SL, 1) and z ∈ S(L) ⊂ CH2(SL) for some

finite extension L/K. By functoriality with respect to field extension, it suffices to prove the

commutativity for such an element (with K replaced by L). It follows from the definitions that

regét(w) = δ1(clét(w)) = δKum(w) ∈ H1(L,Qp(1)).

Hence by (51) and (52) we have

δ3(clét(w ∪ z)) = δ1(clét(w)) ∪ cl(z)′ = δKum(w) ∪ cl(z)′.

By definition, trét(cl(z)′) = 1 and hence trét(δ3(clét(w ∩ z))) = δKum(w) as desired.

5.6 The syntomic regulator and a compatibility result

We now prove a p-adic analogue of Theorem 5.2 by connecting the above étale picture to p-

adic (or “syntomic”) regulators on our motivic cohomology groups. The theory of syntomic

regulators has a long history, including the works of Fontaine–Messing [FM], Niziol [N], Besser

[Bes], Besser–Loeffler–Zerbes [BLZ], and Nekovár–Niziol [NN]. Rather than survey this deep and

important theory, however, we give an ad hoc definition of the p-adic regulator that suffices for

our applications.

Recall that Bloch and Kato [BK, Def. 3.10] have defined an “exponential” map

exp: H2
dR(S/K)/F 2 −→ H1(K,H2

ét(S,Qp(2))). (53)

Let CH2(S, 1)ét denote the subspace of classes Ξ ∈ CH2(S, 1) such that regét(Ξ) lies in the image

of the Bloch–Kato exponential. We define the p-adic regulator

regp : CH2(S, 1)ét −→ (F 1H2
dR(S/K))∨

as the composition of the étale regulator, the inverse of the Bloch–Kato exponential7 and the

Poincaré duality isomorphism

H2
dR(S/K)/F 2 ∼= (F 1H2

dR(S/K))∨.

Next denote by

clp : CH1(S) −→ F 1H2
dR(S/K)

the de Rham cycle class map. The p-adic analog of Theorem 5.2 is the following.

7Strictly speaking, regp as defined here is only well-defined up to the kernel of exp. However, in view of (55),
classes in the kernel of exp do not contribute to our pairing and can be safely ignored in our applications.
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Theorem 5.4. The pairing 〈 , 〉 restricted to CH2(S, 1)ét × CH1(S) takes values in O∗K , and we

have a commutative diagram

CH2(S, 1)ét × CH1(S)

clp
��

〈 , 〉 // O∗K
logp

��
CH2(S, 1)ét × F 1H2

dR(S/K)
regp // K,

(54)

where logp : O∗K → K denotes the p-adic logarithm.

Proof. We can connect the bottom row of (50) to de Rham cohomology groups via the following

commutative diagram:

H1(K,H2
ét(S,Qp(2)))×H2

ét(S,Qp(1))GK
∪ //

α

��

H1(K,H4
ét(S,Qp(3)))

π∗=(trét)∗ // H1(K,Qp(1))

H2
dR(S/K)/F 2 × F 1H2

dR(S/K)

exp

OO

∪ // H4
dR(S/K)

trdR //

exp

OO

K.

exp

OO

(55)

The map α is the composition of the inclusion

H2
ét(S,Qp(1))GK ⊂ DdR(H2

ét(S,Qp(1))) = (H2
ét(S,Qp(1))⊗Qp BdR)GK

given by x 7→ x⊗ 1 with the étale-to-de Rham comparison isomorphism

DdR(H2
ét(S,Qp(1)))

∼ // H2
dR(S/K)(1),

where the twist on the right represents a shift in the filtration. The image of α clearly lands

in F 1H2
dR(S/K). The commutativity of the square on the left in (55) follows directly from the

definition of exp, granting the compatibility of the comparison isomorphism with cup product

(which is proven in [Ts, Theorem A1]). The commutativity of the right square expresses the

compatibility of trace maps on top degree de Rham and étale cohomology, proven in loc. cit.

Diagrams (50) and (55) together show that the pairing 〈 , 〉 restricted to CH2(S, 1)ét×CH1(S)

takes values in K∗ ∩ δ−1
Kum(exp(K)), which by [BK, Page 359] is equal to O∗K .

The commutativity of (54) also follows from (50) and (55). On CH1(S), the p-adic cycle class

map clp is given by the composition of the étale cycle class map and the map α (see [Fa, Theorem

8.1] or [Ts, Theorem A1]). Furthermore, Poincaré duality is given by cup product and the trace

map on top degree cohomology (on both the étale and de Rham side). The theorem then follows

from the fact that for Qp(1), the Bloch–Kato exponential is an inverse to the p-adic logarithm,

i.e. the composition

O∗K
logp // K

exp // H1(K,Qp(1))

is equal to δKum. This last fact is proven in [BK, Page 358].

Theorem 5.4 is the key technical result that will allow us to relate the special values of p-adic

Rankin L-series to the p-adic logarithms of units.
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6. Regulator Formulae for Rankin L-series

6.1 Beilinson–Flach elements, after Lei–Loeffler–Zerbes

Let m and M be positive integers and let X = X1(M). In our applications, m will be a power

of p and M will have the form Npr. In [LLZ], Lei, Loeffler, and Zerbes define an element

Ξ̃m,M,1 ∈ CH2(X2 ⊗Q(µm), 1)

related to Rankin L-series of weight 2 modular forms. Let β be a primitive Dirichlet character

with conductor m. Define

Ξβ,M =
∑

a∈(Z/mZ)∗

σa(Ξ̃m,M,1)⊗ β−1(a) ∈ CH2(X2 ⊗Q(µm), 1)⊗Q,

where σa ∈ Gal(Q(µm)/Q) denotes the automorphism ζm 7→ ζam. The class Ξβ,M is called the

Beilinson–Flach element associated to β and M .

Let f, g ∈ S2(Γ1(M)) such that f and g are eigenforms for the Hecke operators away from

M . Let f∗ = f(−z) denote the modular form in S2(Γ1(M)) whose Fourier coefficients are the

complex conjugates of those of f . Define ωf , η
ah
f ∈ H1

dR(X) by

ωf = 2πif(z)dz, ηah
f =

f∗(z)dz

〈f∗, f∗〉
=
f(−z)dz
〈f∗, f∗〉

,

and similarly for g. Here we are employing the usual identification X(C) = Γ1(M)\(H∪P1(Q)).

Via the Kunneth decomposition, we can consider H1
dR(X)⊗2 ⊂ H2

dR(X2). The following is The-

orem 4.3.7 of [LLZ], which generalizes a formula of Beilinson in the case β = 1 and is based on

Proposition 4.1 of [BDR1].

Theorem 6.1 (Lei, Loeffler, Zerbes). We have

regC(Ξβ,M )(ηah
f ⊗ ωg) = −

L′mM (f, g, β−1, 1)

4πi〈f∗, f∗〉
A(f, g, β−1, 1), (56)

where

A(f, g, β−1, s) := τ(β)
∏
`|M
`-m

1

1− β−1(`)a`(f)a`(g)`−s
. (57)

Now let ψ be an auxiliary Dirichlet character with conductor relatively prime to m, and

suppose that M is large enough so that fψ, gψ ∈ S2(Γ1(M)). Since 〈f, f〉M = 〈fψ, fψ〉M , the right

side of (56) is equal for the pairs (fψ, g) and (f, gψ). Now, the involution on X1(M)2 given by

switching factors acts on Ξβ,M by β(−1). On the other hand, the induced action of this involution

on H1
dR(X)⊗2 ⊂ H2

dR(X2) is given by x⊗ y 7→ −y ⊗ x because of the anti-commutativity of the

cup product in degree 1. This implies that

regC(Ξβ,M )(ηah
f ⊗ ωg) = −β(−1) regC(Ξβ,M )(ωg ⊗ ηah

f ).

Combining these observations, we obtain from Theorem 6.1:
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Corollary 6.2. With notation as above, we have:

regC(Ξβ,M )(ηah
fψ
⊗ ωg − β(−1)ωgψ ⊗ η

ah
f ) = −

L′mM (f, g, ψβ−1, 1)

2πi〈f∗, f∗〉M
A(fψ, g, β

−1, 1).

6.2 The classes ηur
f and ωg

Before stating the p-adic analogues of Theorem 6.1 and Corollary 6.2, we must introduce some

notation. Continuing with the notation of the previous section, we assume that the prime p

divides M (the level of the weight 2 newforms f and g) and m (the modulus of the character β).

Over any field K containing Q(µM ), we have the short exact sequence

0 −→ H0(XK ,Ω
1
X) −→ H1

dR(XK) −→ H1(XK ,OX) −→ 0. (58)

The image of the class ηah
f ∈ H1

dR(XC) in H1(XC,OX) is actually defined over the number field

Kf generated over Q(µM ) by the Fourier coefficients of f , in the sense that it arises from an

element ηf ∈ H1(XKf ,OX) by base extension ([DR, Corollary 2.13]). If K is a finite extension

of Qp containing Kf , we can then view ηf as an element of H1(XK ,OX). Now, for such a K,

the space H1
dR(XK) is endowed with an action of Frobenius. On the 2-dimensional f -isotypic

subspace of H1
dR(XK) (i.e. the subspace on which the Hecke operators away from p act via

the eigenvalues of f), there is a canonicial 1-dimensional subspace on which Frobenius acts by

multiplication by αf = ap(f) = the Up-eigenvalue of f . This subspace maps isomorphically via

(58) to H1(XK ,OX)f . The lift of ηf ∈ H1(XK ,OX)f via this isomorphism is denoted

ηur
f ∈ H1

dR(XK).

Meanwhile, the differential ωg ∈ H0(XC,Ω
1
X) is well-known to represent a class H1

dR(XC)

defined over the number field Kg, and may therefore be viewed as an element of H1
dR(XK) for

any p-adic field K containing Kg.

6.3 p-adic Rankin L-series

In this section, we state p-adic analogues of Theorem 6.1 and Corollary 6.2.

Let F and G be Hida families. Let κ ∈ WF , κ
′ ∈ WG be arithmetic weights such that

ν(κ) = ν2,α, ν(κ′) = ν2,α′ for some Dirichlet characters α, α′ of p-power conductor. Note that α

has the same parity as χF and α′ has the same parity as χG. The specializations f := Fκ and

g := Gκ′ are p-ordinary forms of weight 2 and characters χFα, χGα
′, respectively. Let M be the

lcm of the levels of f and g. Let β be a Dirichlet character of conductor pw, w > 0. Let the

conductors of α and β−1α′ be pr, pr
′
, respectively, and assume that r, r′ > 0. Define

Λp(f, g, β) := Lp(F,G, κ, κ
′, ν1,β)× 2i · α(−1)τ(α)τ(β−1α′)

ap(f)−w−r′+2rap(g)−w+r′χF (p)−rχG(p)−r′
. (59)

In [KLZ, Theorem 10.2.2], the following p-adic analogue of Theorem 6.1 is proven.

Theorem 6.3 (Kings, Loeffler, Zerbes. Let M = NfNgN
2
ψ, and let S = X1(M) ×X1(M). We

have

regp(Ξβ,M )(ηur
f ⊗ ωg) = Λp(f, g, β).
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Theorem 6.3 can be deduced by specializing Theorem 10.2.2 of [KLZ] to our setting. The spe-

cialization of the class cBF f ,g at the point (κ, κ′, ν1,β) is equal to the étale regulator of the projec-

tion of the class we have denoted Ξβ,M onto the (f, g)-isotypic component of CH2(S, 1), up to the

factor depending on c on the right side of [KLZ, Theorem 10.2.2], and a factor (ap(f)ap(g))−w.

The function denoted L is a logarithm, i.e. in our context an inverse to the Bloch–Kato expo-

nential, and hence the pairing indicated is exactly our p-adic regulator regp. The specialization

of ηa ⊗ ωg at our point is ηur
f ⊗ ωg up to a factor of ap(f)−u, where u is the power of p dividing

Nf . Comparing the normalizations for the p-adic L-functions in [KLZ] and in this paper explains

the constants in (59).

Remark 6.4. Theorem 6.3 is a generalization of Theorems 4.2 and Corollary 4.2 of [BDR1],

which give the version of this result in the case α = α′ = β = 1, and Theorem 3.9 of [BDR2],

which handles the case when f is fixed but g moves in a p-adic Hida family G.

Now let ψ be a Dirichlet character with p - Nψ. It is easy to see from the interpolation property

that Lp(Fψ, G) = Lp(F,Gψ). Arguing as before with the signs of the “swapping” involution on

X1(M)2, we obtain:

Corollary 6.5. Let M = NfNgN
2
ψ, and let S = X1(M) × X1(M). There is a functional

Lp ∈ F 1H2
dR(S/K))∨ such that expα(pd(Lp)) = regét(Ξβ,M ) and

Lp(η
ur
fψ
⊗ ωg − β(−1)ωgψ ⊗ η

ur
f ) = 2Λp(fψ, g, β).

7. Beilinson–Flach units

In this section, we prove that the regulators appearing in Corollaries 6.2 and 6.5 can be interpreted

as the logarithms (archimedian and p-adic) of an algebraic unit in a cyclotomic field. As a first

step, we show that the de Rham cohomology classes appearing in these regulators have a common

algebraic source, namely a certain element of CH1(X2). This element will be constructed out of

Hecke operators.

7.1 Algebraic cycles attached to f

Let X = X1(M), J = J1(M) = Jac(X) and S = X1(M)×X1(M). As in [DRS, pg. 19, eq. (65)],

we can view the graph of an element T ∈ End(J) as an element gr(T ) ∈ CH1(S), well defined up

to vertical and horizontal components (i.e. up to an element of (π1)∗CH1(X) + (π2)∗CH1(X),

where πi : X × X → X are the projection maps). For example, a Hecke operator T` can be

described as a correspondence associated to a pair of morphisms f1, f2 : X1(M`) → X1(M).

These induce a morphism f1 × f2 : X1(M`)→ S, and gr(T`) ∈ CH1(S) is the class of the image

of f1 × f2.

We now describe the various homomorphisms that we need:

– Let f ∈ S2(Γ1(Nf ), χf ) be a newform of level Nf . Let T ⊂ End(J1(Nf )) denote the Hecke

algebra of J1(Nf ) generated by operators T` for ` - Nf , U` for ` | Nf , and the diamond

27



Samit Dasgupta

operators 〈d〉 for d ∈ (Z/NfZ)∗. Let K denote a field containing Kf . Let Tf∗ ∈ T ⊗ K
denote the idempotent defining projection onto the f∗-isotypic component of T.

– Let WNf ∈ End(J1(Nf )) denote the Atkin–Lehner involution. The root number of f is the

algebraic number of complex absolute value one satisfying f |WNf
= W (f)f∗. We suppose

that W (f) ∈ K and we define W̃Nf := W (f) ·WNf ∈ End(J1(Nf ))⊗K.

– Let ψ denote a Dirichlet character and let M = NfN
2
ψ. Suppose that the field K contains

the values of the character ψ and the Nψth roots of unity. There is a twisting map

twψ ∈ Hom(J1(M), J1(Nf ))⊗K

described analytically as follows. For z ∈ Γ1(M)\H = Y1(M)(C), let

twψ([z]) =
1

τ(ψ−1)

Nψ∑
a=1

ψ−1(a)[z + a/Nψ] ∈ (Div Y1(Nf )(C))⊗K

as a map on divisors.

– Let tr : J1(Nf )→ J1(M) be the trace map induced [z] 7→
∑

x∈π−1z[x] where π is the usual

projection X1(M)→ X1(Nf ). The map tr is the standard Albanese morphism attached to

the map π. We let t̃r := deg(π)−1 tr.

Let ε = ψ(−1) = ±1. Define the endomorphism Tf,ψ ∈ End(J)⊗K as the composition

J1(M)
ε·twψ // J1(Nf )

W̃Nf // J1(Nf )
Tf∗ // J1(Nf )

t̃r // J1(M)

As mentioned above, gr(Tf,ψ) ∈ CH1(S)⊗K is well-defined only up to vertical and horizontal

components. In order to handle this ambiguity, we choose a rational base point ∞ ∈ X(Q)—for

example, we may take the usual point corresponding to the cusp ∞—and, following [DDLR,

§2.3], define a projector ε∞ on CH1(X ×X) as follows:

ε∞(Z) = Z − (i1)∗(π1)∗Z − (i2)∗(π2)∗Z.

Here i1, i2 : X → X ×X are the inclusions of vertical and horizontal components over the base

point ∞. We define

Zf,ψ :=
1

2i
ε∞(gr(Tf,ψ)) ∈ CH1(X ×X)⊗K. (60)

This element still has an ambiguity in its vertical and horizontal components (due to the original

ambiguity of Tf,ψ and the choice of base point ∞), but any ambiguity in these components is

now algebraically equivalent to zero. Let CH1(S)HV denote the quotient of CH1(X ×X) by the

subroup of horizontal and vertical classes algebraically equivalent to zero; the image of Zf,ψ in

CH1(S)HV ⊗K is well-defined.

Proposition 7.1. Classes in CH1(S) represented by vertical or horizontal components alge-

braically equivalent to zero lie in the kernel of the intersection pairing 〈 , 〉 defined in Section 5.2.

Therefore the intersection pairing descends to a pairing on CH1(S)HV.
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Proof. We must show that for fixed A ∈ CH1(S), the function 〈A, π∗1B〉 is constant for B ∈ X.

Yet this map defines a morphism X → Gm/K ; since X is a smooth projective curve, such a

morphism must be constant.

The following proposition shows that the cycle Zf,ψ is a common algebraic source of the

differentials appearing the regulator formulae of Corollaries 6.2 and 6.5.

Proposition 7.2. Let f, ψ, andK be as in the beginning of this section. Let η̃f ∈ H1
dR(X1(N)K)f

be any lift of the class ηf ∈ H1(X1(N)K ,OX) defined in Section 6.3. Let ε = ψ(−1) and define

η̃fψ = ε · tw∗ψ η̃f . We have

cldR(Zf,ψ) = η̃fψ ⊗ ωf − ε · ωfψ ⊗ η̃f . (61)

In particular over C we have

clC(Zf,ψ) = ηah
fψ
⊗ ωf − ε · ωfψ ⊗ η

ah
f (62)

and over any finite extension of Qp containing Kf we have

clp(Zf,ψ) = ηur
fψ
⊗ ωf − ε · ωfψ ⊗ η

ur
f . (63)

Remark 7.3. Note that ωfψ = tw∗ψ ωf and that, as the notation suggests, η̃fψ is a lift of the class

ηfψ ∈ H1(X1(N)K ,OX) defined in Section 6.3. Note that η̃f is well-defined up to the addition

of a multiple C · ωf , and such an addition changes η̃fψ by Cε · ωfψ . Therefore, the right side of

(61) is well-defined.

Proof. The effect of ε∞ is to project onto the Kunneth (1, 1)-component of H2
dR(XK ×XK). The

class cldR(Zf,ψ) ∈ H1
dR(XK)⊗2 is equal to the image of the endomorphism of H1

dR(XK) induced

by Tf,ψ under the identifications

EndK(H1
dR(XK)) ∼= H1

dR(XK)⊗K H1
dR(XK)∨ ∼= H1

dR(XK)⊗K H1
dR(XK).

Here the last isomorphism is induced by the Poincaré duality pairing: H1
dR(XK) ∼= H1

dR(XK)∨

via ω 7→ (ω,−)pd.

Let us now compute the endomorphism of H1
dR(XK) induced by pulling back Tf,ψ. The map

t̃r
∗

projects onto the subspace of forms arising from H1
dR(X1(Nf )K). The map T ∗f∗ then projects

onto the f∗-isotypic component of H1
dR(X1(Nf )K), which is spanned by ωf∗ and η̃f∗ . The map

W̃ ∗Nf maps ωf∗ to ωf and η̃f∗ to η̃f . Finally, ε · tw∗ψ maps ωf 7→ ε · ωfψ and η̃f 7→ η̃fψ . Our

composition therefore sends ωf∗ 7→ ε · ωfψ and η̃f∗ 7→ η̃fψ .

Under our normalization for Poincaré duality we have (ωf , η̃f∗)pd = 2i, as can be calculated

from the complex realization (see Remark 5.1):

− 1

2πi

∫
X
ωf ∧ ηah

f∗ = 2i,

with the factor of 2i coming from dz ∧ dz = (2i)dx ∧ dy. This explains the factor of 2i in (60),

and we obtain

cldR(Zf ) = η̃fψ ⊗ ωf − ε · ωfψ ⊗ η̃f
as desired.
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7.2 Definition of Beilinson–Flach units

Let f ∈ S2(Γ1(Nf ), χf ) be a newform. Let ψ and β be Dirichlet characters with the same parity

and coprime conductors Nψ, Nβ. Let M = NfN
2
ψ. We define the Beilinson–Flach unit bf,ψ,β via

the intersection pairing (45):

bf,ψ,β := 〈Ξβ,M , Zf,ψ〉 ∈ Q
∗ ⊗Q. (64)

This intersection is taking place on the surface S = X1(M)×X1(M). The following proposition

explains why the element bf,ψ,β is called a unit.

Proposition 7.4. Let K = Q(ζNfNψNβ ). Let η = (χfψ)−1β and assume that η 6= 1. We have

bf,ψ,β ∈ (O∗K ⊗Q)η.

Proof. We view points on Y = Y1(M) in the usual way as parameterizing pairs x = (E,P ) where

E is an elliptic curve and P ∈ E is a point of exact order M . We first show that for every point

(x1, x2) ∈ Y 2 appearing in the intersection of Zf,ψ and the cycles occuring in the definition of

Ξβ,M , the corresponding elliptic curves E1 and E2 have complex multiplication.

Since f is new, multiplicity one implies that f is distinguished in S2(Γ1(M)) by its Hecke

eigenvalues at primes not dividing any fixed integer A. Therefore, if we complete f1 = f to a

basis {f1, . . . , fr} of eigenforms in S2(Γ1(M)) and we choose for each i > 2 a prime `i - A such

that a`i(fi) 6= a`i(f), we can write

Tf =
r∏
i=2

T` − a`i(fi)
a`i(f)− a`i(fi)

.

Choosing A = NfNβNψ, we see that Tf can be written as a linear combination of operators

Tn with gcd(n,NfNβNψ) = 1. By definition, for any point (x1, x2) ∈ gr(Tn), the elliptic curves E1

and E2 are related by a cyclic n-isogeny. Now the remaining maps occuring in the homomorphism

Zf,ψ also send elliptic curves to isogenous elliptic curves; furthermore, the primes occuring the

in the degrees of these isogenies all divide NfNψ, and in particular are relatively prime to the n

occuring above.

Now by definition (see [LLZ, §2.7]), the curves arising in the definition of Ξβ,M are the images

Cj of the maps Y1(N2
βM)→ Y1(M)2 given by z 7→ (z, z + j/Nβ) with gcd(j,Nβ) = 1 under the

usual complex analytic isomorphism Y1(M)(C) = Γ1(M)\H. For any z ∈ H, the elliptic curves

E1 = C/〈1, z〉 and E2 = C/〈1, z + j/Nβ〉 are related by a cyclic N2
β -isogeny.

Suppose that (x1, x2) ∈ gr(Zf,ψ) and that (x1, x2) lies on some Cj . The elliptic curves E1

and E2 underlying the points x1, x2 are related on the one hand by a cyclic isogeny of degree

divisible by n, with gcd(n,Nβ) = 1, and on the other hand by a cyclic isogeny of degree N2
β . It

follows (by composing one of these isogenies with the dual of the other) that E1 is related to

itself by a nontrivial cyclic isogeny. (This argument does not quite work if n = 1, but it may be

easily fixed, e.g. by replacing the constant 1 by an appropriate linear combination of Tn with

n > 1; we leave the necessary modifications to the reader.) The only elliptic curves related to

themselves by cyclic isogenies are those with complex multiplication. This proves the claim that

E1 (and hence the isogenous curve E2) have complex multiplication.
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Now, the functions on the curves Cj used in the definition of Ξβ,M are Siegel units. It is

well-known from the theory of complex multiplication that Siegel units of level N2
βM evaluated

at CM points are units in abelian extensions of quadratic imaginary fields, unless N2
βM is a

power of a prime `, in which case one obtains `-units (see e.g. [Ram]). The same is true for

the values of Siegel units at cusps at which the units are regular (one obtains circular units in

abelian extensions of Q). In conclusion, we find that bf,ψ,β := 〈Ξβ,M , Zf,ψ〉 lies in O∗H ⊗Q for

some number field H (or OH [1/`]∗ ⊗Q if N2
βM is a power of a prime `).

To conclude the proof, we must show that Galois acts on bf,ψ,β via the character η = χ−1
f ψ−1β.

This finishes the proof even in the case that N2
βM is a power of a prime `, since the inclusion

(O∗K ⊗Q)η ⊂ (OK [1/`]∗ ⊗Q)η is an isomorphism when η 6= 1 as we have assumed.

The intersection pairing 〈 , 〉 is Galois equivariant. Galois clearly acts on Ξβ,M via β. The

Hecke operators, and hence also the idempotent Tf , are defined over Q. Galois acts on twψ via

ψ−1 (see [LLZ, Prop. 2.7.5(3)]). The Atkin-Lehner involution WNf is defined over Q(µNf ), and

for a prime q - Nf , Frobenius at q acts on WNf via σq(WNf ) = WNf ◦〈q〉. The diamond operators

act on f∗ through the character χ−1
f . Combining these observations, it follows that Galois acts

on Zf,ψ by χ−1
f ψ−1. The desired result follows.

Theorem 7.5. Let M = NfN
2
ψ as above. Suppose that β and ψ have the same parity. We have

log∞(bf,ψ,β) =
L′NβM (f, f, ψβ−1, 1)

2πi〈f∗, f∗〉M
A(fψ, f, β

−1, 1)

where A(fψ, f, β
−1, s) is as in (57) and log∞ is as defined in §4.2.

Proof. In view of the definition of bf,ψ,β given in (64), the result follows by combining Theo-

rem 5.2, Corollary 6.2 , and Proposition 7.2 with g = f .

Similarly combining Theorem 5.4, Corollary 6.5, and Proposition 7.2 we obtain:

Theorem 7.6. Let κ ∈ WF with ν(κ) = ν2,α. Suppose that β and ψ have the same parity. With

notation and assumptions as in Section 6.3, we have

Lp(F, Fψ, κ, κ, ν1,β) =
α(−1)ap(f)−2w+2rχF (p)−r−r

′
ψ(p)−w−r

′

4iτ(α)τ(β−1α)
logp(bf,ψ,β).

8. Factorization on half of weight space

8.1 Two-variable factorization

We are now in a position to prove Theorem 2 from the Introduction, which states:

Lp(F, F, ψ, κ, κ, σ) = E(κ, σ) · Lp(Sym2 F,ψ, κ, σ)Lp(χFψ, z · σ/κ)

for κ ∈ WF and σ ∈ W such that σ(−1) = −ψ(−1).

Proof of Theorem 2. By continuity, it suffices to prove the result on the dense set of points (κ, σ)

in WF ×W such that ν(κ) = ν2,α and σ = ν1,β where β has the same parity as ψ. The equation

31



Samit Dasgupta

we want to prove is:

Lp(F, F, ψ, κ, κ, ν1,β) = E(κ, σ)Lp(Sym2 F,ψ, κ, ν1,β)Lp(χFψ, ν0,βα−1). (65)

Theorem 7.6, equation (36), and equation (42) give formulae for the three p-adic L-functions in

this equation. We recall the notation ξ = ψβ−1, η = χFψαβ
−1, cond(αβ−1) = pr

′
, cond(α) = pr.

Note that, relative to the classical notation, we have

Lp(χFψ, ν0,βα−1) = ε̃(χFψ, ν1,αβ−1)Lp(χ
−1
F ψ−1βα−1, 1)

=
−χ−1

F ψ−1(−pr′)iaχF ψ
τ(β−1α)

logp(uη).

The second equation here uses (42) along with the well-known formula τ(χ)τ(χ−1) = χ(−1)Nχ

and the fact that βα−1 has the same parity as χFψ. We have from (36):

Lp(Sym2 F,ψ, κ, σ) =
−ψ(−1)

4iaχF ψ
· ap(f)2r−2wτ(β)ψ(p)−w

χF (p)rτ(α)W ′(f)
· L(Sym2 f, ξ, 1)

−4π〈f, f〉
.

and from Theorem 7.6:

Lp(F, Fψ, κ, κ, ν1,β) =
α(−1)ap(f)−2w+2rχF (p)−r−r

′
ψ(p)−w−r

′

4iτ(α)τ(β−1α)
logp(bf,ψ,β).

Cancelling common terms, our desired result may therefore be written:

logp(bf,ψ,β) = τ(β)
L(Sym2 f, ξ, 1)

−4πi〈f, f〉
∏
`|N

(1− η(`)) logp(uη). (66)

Meanwhile, we consider the classical factorization formula

L′M (f, f, ξ, 1) = LM (Sym2 f, ξ, 1)L′M (χFαξ, 0),

where in each instance LM indicates that Euler factors at primes dividing M have been removed.

Combining Theorem 7.5 and equation (40), we obtain

log∞(bf,ψ,β) · 2πi〈f∗, f∗〉
τ(β)

∏
`|M (1− ξ(`)a`(f)2`−1)−1

= −1

2
LM (Sym2 f, ξ, 1)

∏
`|N

(1− η(`)) log∞(uη).

Now, the Euler product on the left represents exactly the missing terms between LM (Sym2 f, ξ, 1)

and the imprimitive L-value L(Sym2 f, ξ, 1). Also, since 〈f∗, f∗〉 = 〈f, f〉, our formula reads:

log∞(bf,ψ,β) = τ(β)
L(Sym2 f, ξ, 1)

−4πi〈f, f〉
∏
`|N

(1− η(`)) log∞(uη). (67)

Since bf,ξ and uη are both elements in the 1-dimensional Q-vector space Uη on which the linear

map log∞ is injective, it follows from (67) that we have

bf,ξ = τ(ξ−1)
L(Sym2 f, ξ, 1)

−4πi〈f, f〉
∏
`|N

(1− η(`))uη

in Uη. Applying logp, we obtain exactly the desired result (66).
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8.2 One variable factorization

We now prove Theorem 1 on half of weight space. Recall that this theorem states that for a

p-ordinary cuspidal newform f of weight k and nebentype character χ, we have

Lp(f ⊗ f ⊗ ψ, σ) = Lp(Sym2 f ⊗ ψ, σ)Lp(χ
′ψ, zσν−1

k,χp
), σ ∈ W,

where χ = χpχ
′ is the decomposition of χ into p-power and prime-to-p parts. We prove the result

when σ(−1) = −ψ(−1).

Proof of Theorem 1 when σ(−1) = −ψ(−1). Let N be the prime-to-p part of the level of f . Let

F be the Hida family of tame level N such that Fκ = f (or Fκ = the ordinary p-stabilization of

f , if p does not divide the level of f) for some arithmetic weight κ with ν(κ) = νk,α (so χ′ = χF

and χp = α). Recall equations (37) and (39):

Lp(Sym2 f ⊗ ψ, σ) = S(f)
Lp(Sym2 F, κ, σ)

P (Sym2 f, ψ, σ)S(f, ψ)
,

Lp(f ⊗ f ⊗ ψ, σ) = S(f)
Lp(F, F, ψ, κ, κ, σ)

P (f, f, ψ, σ)S(f, ψ)
.

In view of Theorem 2 and the above equations, our result boils down to

E(κ, σ) =
∏
`|N

(1− χFψκσ−1(`)/`) =
P (f, f, ψ, σ)

P (Sym2 f, ψ, σ)
. (68)

Now the Euler factors of the imprimitive L-functions L(f, f, ψ, s) and L(Sym2 f, ψ, s) agree

at primes ` | N , namely, they both equal (1 − a`(f)2ψ(`)`−s). Furthermore, in view of the

decomposition ρf⊗ρf⊗ψ ∼= (Sym2 f⊗ψ)⊕(χψεk−1), the Euler factors of the primitive L-functions

L(f ⊗ f ⊗ ψ, s) and L(Sym2 f ⊗ ψ, s) disagree by a factor of (1 − χψ`−s+k−1). Therefore, the

ratio of the polynomials P`(f, f, ψ, x) and P`(Sym2, ψ, x) is exactly (1− (χψ)(`)`k−1x). Plugging

in σ−1(`) for x and substituting κ = νk,χp in (68), the desired result follows.

9. Functional equations

For the remainder of the paper, we assume that p does not divide the level N of the newform

f . In order to deduce Theorem 1 on the half of weight space satisfying σ(−1) = ψ(−1) from

the other half where we have already proven the result, we will prove functional equations for

Lp(f ⊗ f ⊗ ψ, σ) and Lp(Sym2 f, σ) that switch the two halves.

9.1 Symmetric Square L-series

Theorem 9.1 (Jacquet-Gelbart). Let f be a newform of weight k and nebentype character χ.

Let ψ be a Dirichlet character. Define

Λ(Sym2 f ⊗ ψ, s) = ΓR(s− k + 2− aχψ)ΓC(s)L(Sym2 f ⊗ ψ, s).

There is an analytic function ε(Sym2 f, ψ, s) = A·Bs with A ∈ Q
∗
, B = cond(Sym2 f⊗ψ) ∈ Z>0,

such that

Λ(Sym2 f ⊗ ψ, 2k − 1− s) = ε(Sym2 f, ψ, s)Λ(Sym2 f ⊗ ψ−1χ−2, s).
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Mirroring the notation from §3.2, we let ε̃(Sym2 f, ψ, σ) = Aσ(B) be the analytic function on

W that agrees with ε(Sym2 f, ψ, s) for s ∈ Z.

Theorem 9.2 (Schmidt). Let f be a newform of weight k and nebentype character χf . Let ψ

be a Dirichlet character of conductor Nψ. Suppose that p - NfNψ. We have

Lp(Sym2 f ⊗ ψ, ν2k−1/σ) = ε̃(Sym2 f, ψ, σ)Lp(Sym2 f ⊗ ψ−1χ−2
f , σ)

Proof. Theorem 5.5(b) of [Sc] states that

Cλ(σ) = C(Σ, λ)σ−1(Mλ)Cλ−1(ν1/σ),

where C(Σ, λ) and Mλ are defined on page 607 of loc. cit. Substituting (33) and (34) into

this equation with λ = ψ−1χ−1 yields the desired result through a tedious but straightforward

calculation.

9.2 Rankin L-series

In vast generality, L-functions of motives are expected to satisfy certain functional equations.

For the L-function L(f ⊗ g ⊗ ψ, s) associated to the tensor product of two modular forms, this

functional equation is known due to the Rankin–Selberg formula and the functional equation

satisfied by non-holomorphic Eisenstein series. We will not require an exact formula for the root

number, only that it is an algebraic number (see [LLZ, Prop 4.1.5] for the statement below).

Theorem 9.3. Let f and g be newforms of weights k > ` and nebentype characters χf , χg,

respectively. Let ψ be a Dirichlet character. Define

Λ(f ⊗ g ⊗ ψ, s) = ΓC(s)ΓC(s− `+ 1)L(f ⊗ g ⊗ ψ, s).

There is an analytic function ε(f, g, ψ, s) = A · Bs with A ∈ Q
∗
, B = cond(f ⊗ g ⊗ ψ) ∈ Z>0,

such that

Λ(f ⊗ g ⊗ ψ, k + `− 1− s) = ε(f, g, ψ, s)Λ(f ⊗ g ⊗ ψ−1χ−1
f χ−1

g , s).

Theorem 9.4. Let f and g be newforms of weights k > ` and nebentype characters χf , χg,

respectively. Let ψ be a Dirichlet character of conductor Nψ. Suppose that p - NfNgNψ. We

have

Lp(f ⊗ g ⊗ ψ, νk+`−1/σ) = ε̃(f, g, ψ, σ)Lp(f ⊗ g ⊗ ψ−1χ−1
f χ−1

g , σ).

Proof. Consider the functional equations for classical and p-adic Rankin L-series given in [LLZ,

Thm 4.2.3 and Prop 5.4.4]. For any N divisible by Nf , Ng and indivisible by p, we have

D(f, g, 1/N, k + `− 1− s) = N1−s
∑

y∈ 1
N
Z/Z

e2πiyD(f |WN
, g|WN

, y, s), (69)

Dp(f, g, 1/N, z
k+`−1/σ) = Nσ−1(N)

∑
y∈ 1

N
Z/Z

e2πiyDp(f |WN
, g|WN

, y, σ). (70)

The functions D and Dp are defined in [LLZ, §4.2 and §5.4]. We apply this with g replaced by

gψ and N = lcm(Nf , Ng · N2
ψ). Now f |WN

is a constant multiple of (fχ−1
f

)(nz) for n = N/Nf .
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Meanwhile (gψ)|WN
shares the same T`-eigenvalues as gχ−1

g ψ−1 for ` - N . As a result, for each

y ∈ 1
NZ/Z, the function D(f |WN

, (gψ)|WN
, y, s) is a multiple of D(fχ−1

f
, gχ−1

g ψ−1 , 1/N, s), where

the multiple is rational function with algebraic coefficients in terms of the form ds with d | N .

In summary, we have

D(f, gψ, 1/N, k + `− 1− s) = R(s)D(fχ−1
f
, gχ−1

g ψ−1 , 1/N, s), (71)

Dp(f, gψ, 1/N, νk+`−1/σ) = R̃(σ)Dp(fχ−1
f
, gχ−1

g ψ−1 , 1/N, σ), (72)

where R(s) is a rational function in terms ds as above and R̃ is the unique meromorphic function

on W such that R̃(νs) = R(s) for s ∈ Z. Now by [LLZ, Theorem 4.2.3], we have

D(f, gψ, 1/N, s) = C(s)Λ(f ⊗ g ⊗ ψ, s)P (f, g, ψ, s) (73)

where C(s) = 21−kik−`N2s+2−k−` and P (f, g, ψ, s) is as in (25). We then rewrite (71) and (72)

as

D(f, gψ, 1/N, k + `− 1− s)
C(k + `− 1− s)P (f, g, ψ, k + `− 1− s)

= R1(s)
D(fχ−1

f
, gχ−1

g ψ−1 , 1/N, s)

C(s)P (f, g, ψ, s)
, (74)

Dp(f, gψ, 1/N, νk+`−1/σ)

C(νk+`−1/σ)P (f, g, ψ, νk+`−1/σ)
= R̃1(σ)

Dp(fχ−1
f
, gχ−1

g ψ−1 , 1/N, σ)

C(σ)P (f, g, χ−1
f χ−1

g ψ, σ)
, (75)

where

R1(s) = R(s)
C(s)P (f, g, ψ, s)

C(k + `− 1− s)P (f, g, ψ, k + `− 1− s)
.

Comparing Theorem 9.3, (73), and (74), we obtain R1(s) = ε(f, g, ψ, s) and hence R̃1(σ) =

ε̃(f, g, ψ, σ). The desired result now follows from (75), since the quotients on the left and right

sides of this equation are (up to the same constant) by definition Lp(f ⊗ g ⊗ ψ, νk+`−1/σ) and

Lp(f ⊗ g ⊗ ψ−1χ−1
f χ−1

g ), respectively.

9.3 Conclusion of the the proof of Theorem 1

One readily verifies that

Λ(f ⊗ f ⊗ ψ, s) = Λ(Sym2 f ⊗ ψ, s)Λ(χψ, s− k + 1)

using (1) and the duplication formula for the Gamma function. Comparing the functional equa-

tions in Theorems 3.2, 9.1, and 9.3, it follows that

ε(f, f, ψ, s) = ε(Sym2 f, ψ, s)ε(χψ, s− k + 1),

and hence

ε̃(f, f, ψ, σ) = ε̃(Sym2 f, ψ, σ)ε̃(χψ, σ/νk−1).

Theorem 1 for σ(−1) = ψ(−1) now follows from the result for σ(−1) = −ψ(−1) by applying

the functional equations for the three p-adic L-functions involved, since the map σ 7→ ν2k−1/σ

switches these two halves of weight space.

35



Samit Dasgupta

10. Greenberg’s conjecture

We conclude by filling in details for the proof of Theorem 4 sketched in the introduction.

10.1 Conjecture at s = 1

We must prove equation (14), which we recall:

L[k]
p (f ⊗ f ⊗ χ−1, k) = LGS(ad f) · S(f)

(
1− 1

p

)
Lalg(ad f, 1). (76)

By definition (see (3) and (37)), we have

L[k]
p (f ⊗ f ⊗ χ−1, k) = Lp(f ⊗ f ⊗ χ−1, νk) = S(f) ·

Lp(F, Fχ−1 , νk, νk, νk)

P (f, f, χ−1, νk)
. (77)

Theorem 5.1d’ of [Hi3] together with the observation that the derivative of 1− ap(Fκ)/ap(f) at

κ = νk is 1
2LGS(ad f) implies that

Lp(F, Fχ−1 , νk, νk, νk) =
1

2
LGS(ad f)

∏
`|Np

(1− `−1) · 1

Nϕ(N)
. (78)

The extra factor of (Nϕ(N))−1 comes from a difference in conventions for the interpolation

property of Lp(F, Fχ−1). With k(P ) = k(Q) = k in the notation of [Hi3], there is a factor of

N in [Hi3, Theorem 5.1d] whereas there is none in our Theorem 3.7; also Hida’s period (see

[Hi3, 4.13]) involves 〈f, f〉Γ0(N) = 〈f, f〉Γ1(N)/ϕ(N). Combining (77) and (78), we see that (76)

is equivalent to

Lalg(ad f, 1) =
1

2
P (f, f, χ−1, νk)

−1
∏
`|N

(1− `−1) · 1

Nϕ(N)
. (79)

Recall that Lalg(ad f, 1) is by definition the algebraic part of L(ad f, 1) using the same period as

in the interpolation formula for the definition of Lp(ad f, s). (Note that the choice of period is

therefore inessential, as scaling the period by a factor scales both Lalg(ad f, 1) and L′p(ad f, 1) by

the same factor, leaving Lan(ad f, 1) independent of choice of period.) From (32), we see that

Lalg(ad f, 1) =
L(ad f, 1)Γ(k)

2 · 4kπk+1〈f, f〉
. (80)

Now the following formula for the imprimitive L(ad f, 1) is well-known from Rankin’s method (for

example, combine the last displayed equation on [Hi3, pg. 5] with the factorization DN (s, f, f∗) =

Limp(ad f, s− k + 1)ζN (s− k + 1)):

Limp(ad f, 1) =
4kπk+1〈f, f〉
Γ(k)Nϕ(N)

. (81)

Now

L(ad f, 1) = Limp(ad f, 1)P (Sym2 f, χ−1, νk)
−1 (82)

and

P (f, f, χ−1, νk) = P (Sym2 f, χ−1, νk)
∏
`|N

(1− `−1) (83)

as discussed at the end of §8. Combining (80)–(83) yields (79) and therefore completes the proof.
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10.2 Conjecture at s = 0

The functional equation (Theorem 9.2) yields

L[0]
p

′
(ad f, 0) · ε̃(Sym2 f, χ−1, νk−1) = −L[1]

p

′
(ad f, 1).

Meanwhile we have

Lalg(ad f, 0) =
L(ad f, 0)Γ(k − 1)

4kπk−1〈f, f〉
= Lalg(ad f, 1)/ε(Sym2 f, χ−1, k − 1),

where the first inequality follows from the interpolation formula (31) and the second by combining

(80) and the classical functional equation (Theorem 9.1). Since

ε̃(Sym2 f, χ−1, νk−1) = ε(Sym2 f, χ−1, k − 1),

we obtain

Lan(ad f, 0) = Lan(ad f, 1)

as desired, in view of the sign in (11). This concludes the proof.
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Annales Scientifiques de l’École Normale Supérieure, 47 no. 4 (2014), 779–832.

DRS H. Darmon, V. Rotger., I. Sols Iterated integrals, diagonal cycles, and rational points on elliptic
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