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Abstract of “ Modeling Intracellular Transport during Messenger RNA Localization
in Xenopus Oocytes ” by Maria-Veronica Ciocanel, Ph.D., Brown University, May
2017

Many organisms need to establish spatial orientation during early development. In

egg cells (oocytes) of the frog Xenopus laevis, spatial differentiation is achieved by

localization of messenger RNA (mRNA), as these molecules move from the nucleus

to the periphery of the egg cell during egg formation. Our goal is to understand how

the long-term dynamics of mRNA molecules varies across the oocyte and how local-

ization is regulated in space and time given parameters estimated using fluorescence

recovery after photobleaching (FRAP) data. Although a large number of analytical

and numerical models have been developed to extract binding and diffusion rates

from FRAP recovery curves, active transport of molecules is typically not included

in the existing models. We introduced a validated numerical method for estimating

diffusion, binding/unbinding rates, and active transport velocities using FRAP data

that captures intracellular dynamics through partial differential equation models.

Given knowledge of these parameters, the effective velocity and diffusion of particles

at large times are derived for linear and nonlinear PDE models of active transport

using dynamical systems and stochastic methods. In combination with FRAP pa-

rameter estimates and predicted run times and lengths of particles, these asymptotic

quantities quantify dynamical properties of localizing and non-localizing mRNA. Our

results confirm the hypothesis of distinct transport dynamics in different regions of

the egg cell and suggest that bidirectional transport of mRNA may influence the

timescale of RNA localization in Xenopus oocytes. In addition, the parameter es-

timates inform numerical simulations of mRNA localization on model microtubule

structures, which suggest that an anchoring mechanism at the cell periphery may be

essential in reproducing localization patterns.
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BA

Figure 1.1: A: Xenopus laevis frog. B: Egg cell in the final stage of oogenesis, with one half
(animal pole) colored brown and the other half (vegetal pole) colored yellow from the accumulation
of egg yolk. Images from the Mowry lab.

1.1 Messenger RNA localization

Many organisms need to establish spatial orientation and patterning during early

development. In particular, the egg cells (oocytes) of many organisms are asym-

metrical and are organized along certain spatial axes. This spatial differentiation

is key in cell division, where different material accumulates in different regions and

the spatial axes of the oocyte control embryo formation [8]. After fertilization of the

oocyte, the embryo consists of one cell which eventually develops into an organism

with multiple cells. The large fertilized egg cell is divided through cell division into

smaller cells [9] whose development in different locations in the newly formed embryo

determines whether they form the skin and nervous system, the gut, or the muscle,

blood and bone [10, 11].

This spatial differentiation in developing organisms can drive expression of genes

that is confined to certain spatial regions and determines the healthy body plan of the

embryo. This is often achieved through asymmetric accumulations of proteins and

messenger RNAs (mRNAs) in oocytes [11, 12] (see Figure 1.1). In particular, active

transport of mRNA is a widely used mechanism for generating and maintaining
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a spatial orientation that is necessary for early development. In Xenopus laevis

frog oocytes (see Figure 1.1), spatial differentiation is achieved by localization of

messenger RNA (mRNA, red dots in Figure 1.2), which consists of an accumulation

of these molecules at the periphery of the cell (denoted vegetal cortex or vegetal pole).

ectoderm

mesoderm

endoderm

Figure 1.2: Cartoon of
the mRNA localization
process, and influence on
healthy embryo develop-
ment.

mRNA particles are moved by molecular motor proteins

along microtubule filaments (blue lines in Figure 1.2), and

their localization to targeted cell destinations is critical for

correct patterning of the embryo [13–16] (see bottom panel

in Figure 1.2). If localization is incomplete 1-2 days into

this early stage in egg formation, the cell develops abnor-

mally or development is compromised. mRNA localization

in Xenopus laevis oocytes is therefore an important model

for understanding how maternal molecules are localized to

influence pattern and polarity [17].

Understanding the mechanisms of mRNA localization

would prove useful in determining factors that prevent com-

plete localization. In particular, uncovering the contribution

of localization mechanisms such as diffusion, active trans-

port by motor proteins, and anchoring at the cell periphery

is required in order to understand how the distribution of

mRNA in the vegetal cytoplasm is regulated in space and

time during localization. Challenges in understanding these

mechanisms include the experimental obstacles for analysis

of transport directionality in vivo, the lack of information on

the microtubular structure, and the limited insight into the

anchoring mechanism at the cell bottom. In collaboration
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Table 1.1: Time and length scales in mRNA localization of Xenopus laevis oocytes.

Parameter Value and references
VLE RNA localization time 24-48 hours [3]
Oocyte diameter (stage III) 300 µm [17]
Vg1 localization element length 340 nt ≈ 115 nm [12]
Diameter of FRAP bleach spot 5 µm [3]
Average microtubule length 9 µm [18]
Microtubule lifetime before catastrophe 100-400 s [18, 19]
Average kinesin run length 1-2 µm [20, 21]
Average dynein run length 1-2 µm [20]

with the Mowry lab at Brown University, we sought to understand how the long-term

dynamics of mRNA molecules varies across the oocyte and to uncover the mecha-

nisms of mRNA localization. Key time and length scales for mRNA localization in

Xenopus laevis oocytes are provided in Table 1.1.

Our approach in quantifying the contributions of different mechanisms to local-

ization in Xenopus oocytes is informed by parameter estimation using fluorescence

recovery after photobleaching (FRAP) data. These experiments are widely used to

understand molecular transport in living cells [22, 23], primarily through modeling

diffusion and binding kinetics [1]. As a result, previous work models FRAP data

using linear reaction-diffusion partial differential equations and estimates diffusion

coefficients and binding rates by fitting the fluorescence recovery data to analytical

expressions [24–33] or by using numerical optimization for more complex geometries

and models [34–36]. In addition to movement by diffusion, macromolecules are ac-

tively transported on cytoskeletal networks by molecular motors such as myosin,

kinesin, or dynein in many cell types. Therefore, our goal was to extract movement

information from FRAP data in cells where transport is a key mechanism for the

dynamics. To capture active transport, we use advection-reaction-diffusion partial

differential equations that account for binding, diffusion, and active transport of

particles. We carry out parameter estimation through optimization of numerical
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FRAP data
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(advection-reaction-diffusion)
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particle dynamics
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and simulations
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Figure 1.3: Cartoon of the proposed approach to drawing predictions for particle dynamics from
FRAP data (adapted from [1]). Input (FRAP data) and output (Predictions for mRNA dynamics)
are marked in blue, while modeling and analysis frameworks are marked in orange.

solutions of the PDE models and demonstrate that our approach allows efficient

extraction of consistent estimates for movement, diffusion, and transition rate pa-

rameters from FRAP data using models of two or four particle states. Advection has

been included in previous active transport models to describe spatial localization of

RNA in Drosophila oocytes and embryos [6, 37], neurofilament transport along axons

in neurons [38, 39] and motor-driven transport along filaments [40, 41]. However,

such models were not applied to FRAP experimental data [1].

Given estimates of the parameters in the transport models considered, we show

how these parameters can be used to predict effective velocities and diffusion rates

for long-term dynamics [1] (see Figure 1.3). Consider for instance a system where

particles switch between movement and diffusion. In one state, particles move with

speed c, and in the other, they diffuse with rate d. Since the particles can switch

between states with transition rates β1 and β2, the effective velocity and diffusion

of the particles in the long run are different from the individual state parameters.

Dynamical systems analysis of general advection-reaction-diffusion models allows us
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to provide general formulas for these large time quantities, that go beyond specific

examples [38, 39] and extend the treatment of reaction-hyperbolic systems [40, 42–44]

and of diffusion in one population [41]. Mathematical derivation of these large-time

solutions, as well as calculation of expected run lengths of motor-cargo complexes on

microtubules (see Table 1.1), allow us to compare parameter estimation predictions

with experimental observations and to refine or validate the models in the context

of the mRNA dynamics in Xenopus laevis [1] (see Figure 1.3 for our approach).

In oocytes of the frog Xenopus laevis, transport of Vg1 mRNA to the vegetal

cortex of the Xenopus oocyte requires a sequence element termed the VLE (vege-

tal localization element) RNA [1]. Since microinjected VLE RNA localizes to the

vegetal cortex [45], we refer to it as “localizing RNA” (see Figure 1.4, RNA in red).

Noting that most RNAs do not localize, we refer to RNA that is not actively trans-

ported but instead only diffuses as “nonlocalizing RNA”. Our approach combines

the parameter estimates obtained using modeling of FRAP data with the analytical

methods to provide insights into the mechanisms of transport for both localizing and

nonlocalizing RNA in Xenopus oocytes (see Figure 1.3). For non-localizing RNA,

our method shows that RNAs in oocytes treated with nocodazole (which disrupts

the cytoskeletal network) may be highly immobile, possibly due to their retention in

large granules of RNAs. On the other hand, nonlocalizing β-globin RNAs switch be-

tween reaction and diffusion in the cytoplasm. For localizing VLE RNA, we confirm

distinct directionality in different regions in the cell as suggested by photoactivation

experiments in [3]. The transport in the vegetal direction is predicted to be faster and

primarily unidirectional close to the nucleus, while the effective diffusion is expected

to be higher in the lower vegetal cytoplasm. Importantly, our results suggest that

some movement in both the animal and vegetal pole directions occurs throughout the

vegetal cytoplasm in Xenopus oocytes [1]. Moreover, moving RNAs are predicted to
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Figure 1.4: mRNA localization during stage III of oogenesis [2] (fluorescently labeled mRNA in
red; from the Mowry lab).

remain in paused states for extended times, as observed in experiments [46].

The parameter estimates are also useful in a modeling framework that accounts

for the fact that active transport is restricted to the microtubule cytoskeleton (see

Figure 1.3). To model the transport on microtubules in the cytoplasm, we consider

nonlinear advection-reaction-diffusion PDE models, where the transition rate from

diffusion to active transport is dependent on the density of microtubules at that

location. In particular, we extend the dynamical systems analysis to a two-state

nonlinear model of transport for mRNA particles, and derive the large time effective

velocity and diffusion of the molecules under the assumption of parallel microtubules.

In Xenopus oocytes, imaging experiments show that the filaments have a mixture

of random and radially outward orientations [3, Figure S3], [7, Figures S5, S6]. We

therefore develop a computational framework for simulating the nonlinear PDE mod-

els with active transport occurring on model microtubule structures similar to [6].

Given that the microtubules experience dynamic instability and that they depoly-

merize in a shrinkage catastrophe when they age [18] (see also Table 1.1), we use

multiple such model microtubule structures to simulate the periods of growth and

shrinkage in microtubule dynamics. Our approach shows that bidirectional transport

is essential in achieving the observed spatial scales of localization as in Figure 1.4
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(see also [3, Figure S2]) and that an anchoring mechanism at the cell periphery is

required for reproducing complete transfer of mRNA to the vegetal cortex in the

timespan of localization. This method can be used to test for predictions on what

dynamical states may get anchored at the periphery and directs future experimental

attention to obtaining a better understanding of the anchoring mechanism.

A summary of our main modeling and analysis findings is provided below:

• FRAP data analysis: Using active transport models for particle dynamics,

we developed efficient algorithms that analyze FRAP data to estimate key

parameters such as velocities of motor-RNA complexes, diffusion coefficients

of free RNA, and transition rates between different dynamical states.

• Large time analysis of transport models: We proved that the dynamics of ac-

tively transported molecules at large time is captured by two quantities, namely

the effective velocity and effective diffusion, and we related these quantities

analytically to parameters extracted from FRAP data using general transport

models.

• Predictions for mRNA dynamics: Our analysis of FRAP data provided support

for the role of paused states and bidirectional transport in Xenopus oocyte

mRNA dynamics.

• Simulations of nonlinear PDE models: Parameter estimates from FRAP data

informed our simulations of transport models on computational model micro-

tubule structures, which allowed the comparison of mRNA spatial distribu-

tions with experimental data and suggested anchoring at the cell cortex is a

key mechanism for the timescale of localization.

We emphasize that in addition to intracellular transport in frog oocytes, our FRAP
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data analysis and the calculation of relevant biological quantities is appropriate more

generally in understanding the contribution of diffusion, active transport, and bind-

ing kinetics in many other organisms.



Chapter Two

Parameter Estimation for

Fluorescence Microscopy Data

(FRAP)
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VLE

MCP

mCh

Figure 2.1: Cartoon of VLE RNA (VLE-MS2) tagged with fluorescent protein mCherry (mCh-
MCP) (visualization similar to [3, Figure 4A]).

2.1 Overview of FRAP experiments

Fluorescence recovery after photobleaching (FRAP) is a widely used tool for investi-

gating protein mobility and local molecular transport in living cells [1, 22, 23]. Live

cell imaging using fluorescent proteins offers a powerful approach to answer both

qualitative and quantitative questions about the dynamics and kinetics of RNA lo-

calization in the early stages of Xenopus oogenesis [17].

In FRAP experiments, the cell membrane sample is initially labeled with a flu-

orescent tag (see Figure 2.1). Then, a circular spot is irreversibly bleached with

a short pulse of light of high intensity [22]. Fluorescence intensity is subsequently

measured in the bleach spot and the amount of fluorescence in the region is plot-

ted as time progresses. Note that photobleaching is not perfect, so that the first

post-bleach fluorescence intensity is low but not zero (see Figure 2.2, t = 0, bottom

panel). Fluorescence recovery curves such as the one in Figure 2.2 (bottom panels)

are used to determine information on processes such as diffusion, binding reactions,

and active transport that are key in determining the mobility in a wide range of

living cells [22].

In Xenopus laevis, acquiring FRAP data requires the definition of regions of

interest (ROI). The ROI of experimental interest is photobleached and additionally

there are two control ROIs that are necessary for adjustment and normalization
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Figure 2.2: Cartoon of FRAP fluorescent labeling and recovery. Top panels show the dynamics
of fluorescent molecules into the bleach spot at different time points, and bottom panels show the
fluorescence recovery in the bleach spot. Red dots in the bottom panel correspond to the amount
of fluorescence in the bleach spot at the time points indicated in the corresponding top panel.
Note that even though the t = 0 bleach spot appears not to contain any fluorescence (top panel),
photobleaching is not perfect and thus there is a low amount of fluorescence in the bleach spot at
the initial time (bottom panel).

of the FRAP data. These ROIs must be the same size as the experimental ROIs

[17]. First, fluorescence data ROIo(t) is collected outside of the sample, and this

is used to correct for the black level of the imaging field. Additionally, ROIn(t)

must be collected from within the sample and does not get bleached. The changes

in fluorescence in this area are used to correct for photobleaching throughout the

length of the experiment [17].

Since fluorescence is visualized as diffuse staining, FRAP data cannot be used to

distinguish or track individual particles [1]; to make predictions about mobility and

local transport, further analysis is needed to understand FRAP recovery curves as in

the bottom panels of Figure 2.2. A large number of diffusion and reaction-diffusion

models have been proposed for the quantitative analysis of FRAP recovery data (re-

viewed in [22, 23]). Most previous work makes use of linear reaction-diffusion partial

differential equations models to predict diffusion and binding in cells. Depending
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on the relative timescales of diffusion and binding, these methods involve estimating

diffusion coefficients and binding rates by fitting the fluorescence recovery data to

analytical solutions of the equations [24–33] or by using optimization and numeri-

cal solutions of the partial differential equations for more complex geometries and

models [34–36].

2.2 Half-time method for cortical RNA

RNA localization in the Xenopus oocyte is responsible for the establishment of polar-

ity during oogenesis as well as the specification of germ layers during embryogenesis.

However, the inability to monitor mRNA localization in live vertebrate oocytes has

posed a major barrier to understanding the mechanisms driving directional trans-

port. In [17], a method for imaging MS2 tagged RNA in live Xenopus oocytes is

described and applied to study the dynamics of cortical RNA. Here we provide re-

sults published in [17] and focus on methods for analyzing FRAP data by estimating

the halftime of recovery. This procedure can be used to measure mobility in dif-

ferent regions of the oocyte, enabling the direct observation of molecular dynamics

throughout the oocyte.

FRAP data is collected in different FRAP ROIs in the vegetal cytoplasm. The

raw time series fluorescence data for each FRAP ROI is then corrected and normal-

ized. To correct for acquisition photobleaching, the adjusted fluorescence time series

A(t) is calculated as

A(t) = F (t)× Fpre

Fn(t)

= (ROI(t)− ROIo(t))×
(ROIn(1)− ROIo(1))

(ROIn(t)− ROIo(t))
, (2.1)
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where F (t) is the background subtracted fluorescence at time t, Fpre is the back-

ground subtracted average intensity for all the prebleach frames and Fn(t) is the

background subtracted fluorescence intensity value of a neighboring region at time t.

Here, ROI(t) corresponds to the raw fluorescence data from the photobleached corti-

cal region of interest at time t, and ROIo(t) and ROIn(t) are fluorescence data from

the non-photobleached regions outside and inside the oocyte respectively at time

t. The second equality in equation (2.1) shows that F (t) corresponds to subtract-

ing the background fluorescence ROIo(t) from the fluorescence intensity of interest

ROI(t), Fpre corresponds to subtracting the background fluorescence of the prebleach

frames ROIo(1) from prebleach fluorescence outside the cortical region ROIn(1), and

Fn(t) is the subtraction of the background fluorescence intensity ROIo(t) from the

fluorescence at the neighboring region outside the cortical region ROIn(t).

The adjusted fluorescence data A(t) can be further normalized against prebleach

values, yielding normalized adjusted fluorescence time series Anorm(t):

Anorm(t) =
A(t)

fpre

=
A(t)

(ROI(1)− ROIo(1))
, (2.2)

where fpre is the background subtracted average prebleach intensity in the cortical

region ROI. As in the case of adjusted data A(t), we do not calculate the normalized

fluorescence in the regions outside the sample (o) and inside the sample (n) since

these areas are not photobleached, and thus the mobility of mRNA in these regions

cannot be determined.

Either of the resulting time series data A(t) or Anorm(t) can be analyzed to extract

binding and diffusion information from FRAP experiments. Other studies have

provided a third normalization technique that can be applied to adjusted normalized

fluorescence data Anorm(t) to yield time series N(t). This method requires that the
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Figure 2.3: Fluorescence intensity normalizations for FRAP recovery curves. Adjusted fluores-
cence data (left, A(t)) is corrected for acquisition photobleaching, normalized adjusted fluorescence
data (center, Anorm(t)) is further normalized against prebleach values, and normalized data (right,
N(t)) has its values set to 0 right after the bleach and 1 at the plateau value.

intensity values are further normalized so that the fluorescence intensity right after

the bleach is set to 0, and the one at the plateau level is set to 1 [24]. The equation

for this normalized time series data N(t) is:

N(t) =
Anorm(t)− Anorm(1)

Anorm,pl − Anorm(1)
, (2.3)

where Anorm(1) is the photobleach corrected fluorescence intensity at the first time

point after bleaching, and Anorm,pl is the average photobleach corrected fluorescence

intensity at the plateau. In practice, Anorm,pl can be calculated as the average of the

last 10% values of photobleach corrected fluorescence intensity Anorm measured in

the experiment. We will focus on A(t) and N(t) in our subsequent analysis of the

FRAP fluorescence intensity curves (see Figure 2.3).

Assuming that there is no active transport of RNA in the cortical RNA pop-

ulation, the adjusted or normalized FRAP fluorescence intensity curves are fit to

the established model in [27]. The equations for the single binding protein reaction

involve a population of free molecules that can diffuse, as well as a population of

bound complexes. The two populations interact via binding and dissociation rates

kon and koff . The main assumptions for the approach in this model are that the

RNA population achieves equilibrium before photobleaching, and that the binding
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sites are part of a large and immobile complex.

Previous FRAP experiments in this system [3, 47] assume that mRNA diffusion

across the bleach spot is fast compared to the timescale of binding of mRNA with

sites it interacts with. Under this assumption, the fluorescence intensity recovery is

called interaction-limited as described in [48] or, equivalently, it satisfies the reac-

tion dominant simplification of the model in [27]. This assumption means that the

adjusted and the normalized fluorescence curves can be fit to the exponential model:

frap(t) = a

(
1− kon

kon + koff

e−koff t

)
, (2.4)

or equivalently to the formulation

frap(t) = a− ce−koff t , (2.5)

where c = a kon

kon+koff
and frap(t) = A(t) or N(t).

Half times of recovery t1/2 based on the above model can be calculated using the

equation:

t1/2 =
ln(2)

koff

. (2.6)

We analyzed the data from the three ROIs for the cortical RNA using the above

methodology. Using this method and fitting with the least squares norm, both the

adjusted and normalized data sets show very similar halftimes t1/2. Estimates of the

rates kon and koff can also be calculated by fitting fluorescence intensity curves to

equation (2.5). Cortical RNA has been hypothesized to be a highly stable complex

as the RNA remains localized from stage II through the end of oogenesis [49]. The

FRAP results discussed here confirm that the cortical fraction of RNA is present in
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a highly stable complex (see Figure 2.4 and Table 2.1).

Table 2.1: Estimated halftimes for mobility of RNA in the cortical area of two oocytes (three
regions). Estimates using both adjusted and normalized data are provided.

t1/2 (s), oocyte 1 t1/2 (s), oocyte 2

Region 1 2 3 1 2 3
Adjusted data 361.72 263.73 350.16 202.65 224.93 201.92

Normalized data 361.70 263.77 350.16 202.66 224.93 201.91

The Matlab routine fit was used to fit the model equation (2.5) to experimental

data (The MathWorks, Natick, MA). In order to optimize the fluorescence data fits

and ensure convergence to reasonable parameter estimates, we can specify initial

guesses for the parameters a, koff , and c in equation (2.5) as well as bounds for

these parameters. Given the meaning of a and c, we search for positive parameters

that are bounded above by a value larger than the maximum fluorescence data (in

practice, this can be 2 × max (frap(t)) and choose the last fluorescence data point

in the FRAP recovery as its starting point in the Matlab fit command. Parameter

koff is most relevant in estimating halftimes and mobility: we search for a positive

parameter, relax the upper bound to infinity, and choose 0 as the initial guess in the

Matlab fit command to optimize the data fitting. The results of the optimization

for koff are summarized through estimates of the halftimes (equation (2.6)) in Table

2.1.

The method described here for analysis of FRAP data produces similar rates of

koff , and thus halftimes of RNA recovery for different data normalizations and differ-

ent regions of interest. The halftime and binding/unbinding rate estimates obtained

from fitting corrected FRAP data are useful in that they may provide a comparison

of mobility of RNA in wild-type oocytes with RNA mobility in oocytes where motor

protein function has been disrupted. As noted above, this FRAP analysis approach

assumes that there is no active transport of RNA [47]. This is a reasonable assump-
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Figure 2.4: Adjusted fluorescence intensity curves (top) and normalized fluorescence intensity
curves (bottom) fitted with equation (2.5). ROI 1 (left), ROI 2 (center) and ROI 3 (right) are
experimental regions in the cortical area of the same oocyte. The black vertical lines indicate the
halftime of recovery for each fluorescence curve.

tion for cortical regions of the Xenopus oocyte as shown in the top panels of Figure

2.4, but cannot account for RNA localization in the vegetal cytoplasm area, which

may depend on the active transport of RNA by molecular motor proteins kinesin

and dynein [3, 7].
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2.2.1 Limitations

We recall that the reaction dominant simplification of the reaction-diffusion model

derived in [27] is employed for diffusion coefficient estimates for VLE RNA in [3]

based on the estimated halftimes of recovery. However, since diffusion is assumed

to be very fast compared to the timescale of binding and FRAP experiments, the

diffusion coefficient cannot be recovered in this scenario [27], and therefore a method

that directly estimates parameters such as the diffusion coefficient and binding rates

is required. In the next section, we make no assumptions on the contribution of

diffusion to particle mobility and instead use a numerical approach to estimate this

coefficient along with other key parameters for FRAP recoveries. Moreover, mRNAs

in healthy Xenopus egg cells are believed to be actively transported by molecular

motor proteins [3]. As a result, in the next section we also consider active transport

as a key mechanism in parameter estimation using FRAP experiments for VLE RNA

in untreated oocytes.

2.3 Novel FRAP parameter estimation using nu-

merical methods for model PDEs

The parameter estimation methods and algorithms in this section were published in

[1].

FRAP data analysis typically involves modeling two particle states (diffusion and

binding reactions) and making assumptions about diffusion, the number and type of

binding interactions, and their respective timescales in cells [27]. However, in sys-

tems with active movement, FRAP data analysis may overestimate diffusion rates



20

if active transport is not taken into account [22]. The goal is to include transport

mechanisms in modeling particle dynamics and develop a numerical approach for ex-

tracting movement parameters from FRAP data using these models. To account for

binding, diffusion, and active transport of particles, we consider advection-reaction-

diffusion partial differential equations. Parameter estimation is carried out through

optimization of numerical solutions of the PDE models considered. Using models of

two or four particle states (see Figure 2.5), we demonstrate that the framework pro-

posed allows us to efficiently extract consistent parameter estimates for movement,

diffusion, and transition rates based on FRAP data. While advection is considered

in certain studies for RNA localization in Drosophila oocytes and embryos [6, 37],

axonal transport [38, 39], and motor-driven transport along filaments [40, 41], these

models are not used for quantifying particle dynamics using FRAP experiments.

Here we design general techniques for FRAP parameter estimation using transport

partial differential equations modeling frameworks and demonstrate their efficacy.

2.3.1 Modeling particle transport and diffusion

We model the particle dynamics using systems of advection-reaction-diffusion partial

differential equations (PDEs). In the application to Xenopus RNA dynamics, the

variables correspond to concentrations of mRNA and mRNA-motor complexes in

different dynamical states. The simplest model we consider assumes that particles

can be in one of two states: a population u moving with speed c (e.g., carried

by molecular motor proteins to the cell cortex) and a population v diffusing in the

cytoplasm with diffusion coefficient d. As in [6], particles can transition from moving
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Figure 2.5: A. Cartoon of the 2-state model of active transport, consisting of a population of
diffusing particles with diffusion coefficient d, and a population of moving particles with velocity c.
B. Cartoon of the 4-state model of active transport, consisting of a population of diffusing particles
with diffusion coefficient d, a population of particles moving towards the cortex with velocity c+
and one moving towards the nucleus with velocity c−, and a stationary population (from [1]).

to diffusing, and vice versa, so that the dynamics is described by the PDE system:

ut = cuy − β1u+ β2v

vt = d∆v + β1u− β2v , (2.7)

where β1 is the rate of transition from the moving to the diffusing state, and β2 is the

rate of transition from the diffusing to the moving state (see Figure 2.5A). We note

that movement is assumed to be one-dimensional (e.g., along a microtubule), while

diffusion can occur in two spatial dimensions. We will refer to this model as the

2-state model from here on. While FRAP experiments do not distinguish between

different dynamical states (see Figure 2.6B), our approach allows us to use FRAP

recovery curves to estimate transport parameters and rates for each state.

To take into account the possibility of bidirectional transport of particles, we

also consider a more complex 4-state model. In this model, we consider a moving

population u+ carried by one type of motor protein (e.g., dynein) to the vegetal

cortex, a moving population u− carried by another type of motor protein (e.g.,
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kinesin) to the nucleus, a population v diffusing in the cytoplasm with diffusion

coefficient d, and a population w paused on the microtubules. Different mechanisms

that may account for the stationary population w are reviewed in [46]. These four

states react through binding and unbinding reactions as follows:

vt = d∆v − β+v + γ+u
+ − β−v + γ−u

−

u+
t = c+u

+
y + β+v − γ+u

+ + α+w − δ+u
+

u−t = −c−u−y + β−v − γ−u− + α−w − δ−u−

wt = δ+u
+ + δ−u

− − α+w − α−w , (2.8)

with rates α+, α−, β+, β−, δ+, δ−, γ+, γ− as in Figure 2.5B. In Xenopus oocytes,

assuming that dynein moves the mRNA down towards the cortex and kinesin mostly

moves the cargo up to the nucleus [3], the rates β+ and β− can be interpreted as

binding rates for dynein and kinesin, respectively, to microtubules, while the rates

γ+ and γ− correspond to unbinding rates for dynein and kinesin, respectively, from

microtubules (see Table 2.2).

To accurately capture the dynamics of particles that are not actively transported

(e.g., nonlocalizing β-globin RNA), we also consider the reaction-diffusion system

ut = −β1u+ β2v

vt = d∆v + β1u− β2v , (2.9)

where population u is in the stationary state and population v is diffusing. This

model has been previously analyzed in many studies, including [27].
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Figure 2.6: A: FRAP bleach regions are numbered according to their location: the perinuclear
cup (Region 1), the upper vegetal cytoplasm (Region 2) and the lower vegetal cytoplasm (Region
3). B: Shown is a representative oocyte in which a 5 µm circular ROI of VLE-MS2 RNA bound by
MCP-mCh was bleached in the vegetal cytoplasm (Region 3). Scale bar corresponds to 10 µm.

2.3.2 Initial conditions: approximations of postbleach inten-

sity profiles

In order to provide initial conditions for the concentrations of RNA in equations (2.7),

(2.8) and (2.9), we analyze the FRAP postbleach intensity profiles from Xenopus

experiments (see Figures 2.6B and 2.7). The photobleaching process in FRAP is

commonly assumed to be an irreversible first-order reaction [22, 24, 26, 31]:

dC(r, t)

dt
= −αIb(r)C(r, t) ,

where C is the spatial concentration of fluorophores, r denotes the radial position,

and α is a bleaching parameter.

The bleaching distribution Ib(r) is assumed to have a Gaussian profile [24]:

Ib(r) =
I0

πr2
e

e
−2 r

2

r2
e ,
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Figure 2.7: Shown is a representative oocyte in which three 5 µm circular ROIs of βG-MS2
RNA (β-globin RNA) bound by MCP-mCh were bleached as detailed in the main text. Scale bar
corresponds to 10 µm.
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Figure 2.8: Sample fit of FRAP postbleach intensity distribution for VLE RNA (see bleach spot
in Figure 2.6B) with equation (2.11) (A) and for β-globin RNA (see bleach images in Figure 2.7)
with equation (2.12) (B) (from [1]).

where re is the effective radius of the distribution. This profile is due to the lim-

itations of bleaching and scanning in FRAP, which lead to what is referred to as

a “corona effect” of the bleached region in [34]. The distribution of fluorophore

concentration after photobleaching can therefore be described by

C(r) = C0e
−αIb(r) = C0e

−Ke−2r2/r2
e , (2.10)

where K is the bleaching depth parameter [22].
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We focus on the focal plane of the fluorescence distribution in the first frame

after photobleach, and fit parameters K, re and x0 to the initial profile:

C(x) = C0e
−Ke

−2
(x−x0)2

r2
e . (2.11)

We note that x0 corresponds to the center of the bleach location. Similar to [32], the

fit of the postbleach intensity profile to the exponential of a Gaussian is very good,

as can be seen in Figure 2.8A.

Postbleach profiles indicate that the three bleach spots in the cytoplasm are not

clearly separated for FRAP experiments in β-globin RNA oocytes (see Figure 2.7).

Since parameter estimation is sensitive to the initial condition given by the postbleach

profile (see §2.3.5), we decided to treat all three spots together in the initial condition

to accurately model the photobleach dynamics (see Figure 2.8B). The advantage of

the numerical parameter estimation method described in the next section is that

it can be applied to experimental data where more than one bleach spot must be

considered. The above fitting procedure is repeated for parameters K, re, x0, x1 and

x2 using the postbleach distribution model:

C(x) = C0e
−K

e−2
(x−x0)2

r2
e +e

−2
(x−x1)2

r2
e +e

−2
(x−x2)2

r2
e


. (2.12)

An example of a postbleach intensity profile in the nonlocalizing RNA case and the

fit to equations (2.12) is provided in Figure 2.8B. The equations for postbleach distri-

bution are modeled in Matlab (The Math Works, Natick, MA), and the optimization

is carried out using the Matlab routine nlinfit.

It is worth noting that studies including [24, 26, 27] assume uniform and in-

stantaneous photobleaching of the circular area during FRAP. In this uniform disk
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model, the post-bleaching intensity profile is assumed to have a flat circular profile

instead of the exponential of a Gaussian in (2.11), as this simplifies the analytical

calculations in those approaches.

2.3.3 Numerical FRAP data fitting procedure

We analyzed the FRAP recovery curves by numerically integrating the model equa-

tions in (2.7), (2.8), and (2.9) using an efficient exponential time-differencing fourth-

order Runge-Kutta scheme [50, 51] for time integration coupled with Fourier spectral

methods for space discretization. The boundary conditions for the PDE systems are

taken to be periodic in both the x and y dimensions. The spatial domain size is

taken to be large relative to the bleach spot size, with length scales of 40 µm in the

horizontal direction x, and 60 µm in the vertical direction of movement y. We used

64 Fourier modes in the spectral decomposition in both directions, which is suffi-

cient for the purpose of our simulations. Finally, different time steps were tested,

and ∆t = 0.1 was chosen for yielding consistent results while also minimizing com-

putation costs.

We assumed a uniform point spread function [22] for detection of fluorescence by

the microscope, which means that the observed fluorescence recovery is obtained by

integrating the concentrations of particles in all states over the bleach spot. For the

2-state model, this implies:

FRAP(t) =

∫

bleach spot

(u+ v)(r, t)dr . (2.13)

This is a reasonable assumption given that the microscope resolution is much smaller

than the radius of the bleach spots in our experiments [29]. Since photofading during
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image acquisition can affect parameter estimation [52], we adjusted the FRAP data

by correcting for background fluorescence and dividing the result by the fluorescence

intensity of a neighboring image at each time point [17, 52] (see §2.2). Parameter

estimation was carried out for individual oocyte data or for an average of data from

multiple oocytes, as indicated in the text. It is worth noting that the diffuse fluores-

cence staining in FRAP experiments does not distinguish between different particle

populations. The method proposed here provides insight into the contribution of the

different dynamical states by fitting the sum of the particle concentrations over the

bleach spot to the ensemble FRAP fluorescence.

The model equations and the fit to experimental data were programmed in Mat-

lab (the Math Works, Natick, MA). The Matlab routine lsqnonlin was used to per-

form L2-norm fits of the experimental FRAP data to equations similar to (2.13) for

the appropriate model. Tests of fitting to FRAP data generated using known param-

eters for model (2.7) revealed that the initial guess for the unknown parameters is

instrumental in convergence to the true parameter fit. Model fits of the experimen-

tal data were therefore preceded by ample parameter sweeps, as in [27, 36]. For the

2-state model, we sampled through values of c, d, β1 and β2 and chose the parame-

ter combinations that yielded the smallest L2-norm difference with the experimental

data as initial guesses for routine lsqnonlin. We used these parameter combinations

from all experimental trials for a certain region or type of RNA as initial guesses

for multiple starting point search optimization in Matlab using MultiStart. This

allowed us to reduce the computational cost of the fitting procedure by running the

same optimization solver (lsqnonlin) using different initial conditions in parallel on

a computer cluster.

The parameter estimation procedure is similar when using the reaction-diffusion

model (2.9). For the 4-state model (2.8), the estimates for speed c and diffusion
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Table 2.2: Fixed parameters for the 4-state model (2.8) from [53, 54] (published in [1]).

Parameter Kinesin Dynein
Binding rate (s−1) β− = 5 β+ = 1.6
Unbinding rate (s−1) γ− = 1 γ+ = 0.27

coefficient D using model (2.7) are used as initial guesses for c+ and d in this more

complex model. Available parameter values, such as the binding and unbinding

rates for kinesin and dynein in [53, 54], are set constant to further reduce the size

of the parameter sweep (see Table 2.2). Table 2.2 illustrates a choice of the bind-

ing/unbinding rates where dynein moves cargo down to the periphery, and kinesin up

to the nucleus, given the evidence for the upper cytoplasm of Xenopus oocytes [3];

however, different assumptions on the motors carrying the RNA in either direction

do not significantly alter the parameter estimates. Sweeps of the parameter space

are then performed for the remaining five model parameters (c−, α+, α−, δ+, δ−),

and then refined in local parameter regions that yield best data fits. This ample

parameter sweep provides initial guesses for the optimization; even though different

initial conditions may lead to different estimates of the kinetic rates, the parallel

computation setup of our optimization allows us to identify multiple initial condi-

tions that lead to the smallest least squares residuals and consistent estimates of

velocities and diffusion.

FRAP data for different types of RNA was fit using three approaches that we

outline here. In Approach 1, we considered individual FRAP curves separately for

each wild-type oocyte and for each region, and we compare the parameter estimates

for VLE RNA mobility in different locations across oocytes. Approach 2 instead

considers averages of FRAP data based on sets of 5 oocytes each, so that for each

region we obtain only one set of parameter estimates for VLE RNA for each such set.

Finally, Approach 3 applies to β-globin RNA, where we consider individual oocyte

FRAP data, but we fit all three regions simultaneously, which yields a single set
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of parameters for each oocyte. We note that differences in β-globin RNA mobility

between regions are not expected [3], and that the initial condition modeling the

postbleach dynamics (see Figure 2.8B and §2.3.2) requires that we consider all three

bleach spots and therefore that we fit all three FRAP curves simultaneously.

2.3.4 Validation using synthetic FRAP data

To ensure the accuracy of our parameter estimation procedure, we generated syn-

thetic FRAP data using two approaches, denoted as Algorithms 1 and 2.

In Algorithm 1, we fix parameters, and deterministically run the partial differ-

ential equations models (2.7) and (2.8) using these fixed parameters and a uniform

disk initial condition. The numerical methods for solving these PDEs are described

in §2.3.3. Since it is deterministic, Algorithm 1 generates smooth synthetic FRAP

recovery curves such as the example in Figure 2.9. We note that the parameters

used here are different from the ones we report for real FRAP data since we used

the uniform disk initial condition for these validation tests.

Algorithm 2 consists of generating recovery curves from a continuous-time Markov

chain (CTMC) in which the states correspond to the populations in model (2.7) or

(2.8). Particles are assumed to switch between states using transition rates, and the

times spent in each state are assumed to be exponentially distributed random vari-

ables with rates given by the transition parameters. This approach requires starting

with a large number of particles with locations in a domain of the same size as the

one used in Algorithm 1 (see §2.3.3). The bleaching process is modeled by initially

assigning particle locations everywhere in the domain except for the designated cir-

cular bleaching spot. The FRAP data then corresponds to the number of particles
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Figure 2.9: Sample synthetic FRAP data generated using Algorithm 1 with equations (2.7) and
parameters c = 0.031 µm/s, d = 0.061 µm2/s, β1 = 4e−13 s−1 and β2 = 0.007 s−1 is fit using our
parameter estimation procedure. The recovered parameters are c = 0.029 µm/s, d = 0.06 µm2/s,
β1 = 1e−12 s−1 and β2 = 0.007 s−1.

Table 2.3: Table of input and output parameters for Figure 2.10. Input corresponds to parameters
used for data generation, Output (104) corresponds to parameters estimated using data generated
with 104 RNAs, and Output (106) corresponds to parameters estimated using data generated with
106 RNAs (from [1]).

c+ (µm/s) c− (µm/s) d (µm2s−1) α+ (s−1) α− (s−1) δ+ (s−1) δ− (s−1)
Input 0.157 2e−4 0.11 0.008 4e−6 3e−4 0.12

Output (104) 0.114 2e−6 0.05 0.002 0.005 0.03 0.08
Output (106) 0.13 3e−5 0.09 3e−5 0.008 0.03 0.05

that move to the circular spot locations at different time intervals. We note that

instead of adding Gaussian noise to simulated recovery curves as in [28], Algorithm

2 proposes a stochastic model that generates more realistic noisy FRAP recovery

curves (see Figure 2.10). Parameter estimation on these FRAP curves shows that

increasing the number of particles modeled yields increasingly better parameter re-

coveries (see Table 2.3).

We tested our parameter estimation methods on synthetic FRAP data generated

using these methods. The generated FRAP curves were used to estimate parameters

using the procedure outlined in §2.3.3, assuming unknown parameters and using the

parameter sweep approach to generate initial guesses. We compared the results with

the original fixed parameters, which were taken from a previous experimental run
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Figure 2.10: Sample synthetic data generated using Algorithm 2 with the Markov Chain approach
(104, respectively 106 RNAs) based on the 4-state model are fit using our parameter estimation
procedure. We note that the approximately 108 RNAs injected in the oocytes correspond to roughly
104-106 RNAs given the spatial domain considered in our simulations (from [1]).
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Figure 2.11: Parameter estimates from Region 1 VLE RNA FRAP data using Approach 1 for
individual oocyte trials are validated using PDE-generated FRAP recovery curves (5 trials shown,
from [1]).

for VLE RNA in Region 1. A fit of the synthetic data generated using the 2-state

PDE model (2.7) with Algorithm 1 is illustrated in Figure 2.9. Figure 2.11 shows

that estimates of the speed to cortex c+, diffusion coefficient d and effective velocity

v (see derivation in §3.2) using Algorithm 1 are almost identical to the originally-

estimated parameters. This confirms that parameter estimates for velocities and

diffusion can be recovered using the proposed parameter sweep and multiple start

point optimization methods. In addition, Figure 2.10 shows the fit of the synthetic

FRAP data generated using the CTMC approach in Algorithm 2.
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Figure 2.12: Estimated diffusion coefficients for β-globin RNA using the same set of 5 oocytes
with instantaneous photobleach (flat circular disk initial conditions), Gaussian initial conditions,
and the experimental photobleach profile (exponential of Gaussian initial condition), left to right.
Note the different scales of the vertical axis (from [1]).

2.3.5 Sensitivity to initial postbleach profile

In analyzing FRAP recovery curves, the initial condition for equations (2.7), (2.8),

and (2.9) can play a significant role on parameter estimates. The uniform disk

model studied in [24] and [26] assumes that the photobleach and dynamics during the

photobleach process are instantaneous. The post-bleaching intensity is thus assumed

to have a flat circular disk profile, which eases the derivation of analytical solutions

for FRAP recovery. We compared the results of our parameter estimation methods

for β-globin non-localizing RNA using the uniform disk model initial conditions

with results obtained using a Gaussian initial condition of the form C0e
− (x−x0)2

r2 and

with results using the spatial fluorescence distribution after photobleach for initial

conditions (fit with a biophysically-justified exponential of Gaussian, see Figure 2.8).

Figure 2.12 shows that the diffusion coefficient estimates for the same set of

5 oocytes are sensitive to the initial condition. The uniform disk profile assump-

tion yields diffusion coefficients 35 times smaller on average than the ones that use
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spatial information from postbleach intensity profiles (see additional estimates in

Figure 2.13). Similarly, uniform disk model estimates of the diffusion coefficient in

particles engaged in active transport (localizing VLE RNA) were on average 33 times

smaller than the postbleach profile ones for individual FRAP data (see Figure 2.14).

These observations indicate that the assumption of instantaneous dynamics during

the photobleach process leads to significant under-estimation of the diffusion coef-

ficient, as previously noted and explored in multiple studies [28, 30–32, 34]. This

suggests that a more practical approach for FRAP data analysis consists of using

the spatial distribution of fluorescence from the first postbleach image as the initial

condition for the FRAP dynamical equations [22, 29, 30, 32, 35].

Binding rates estimates are also believed to be affected by the assumption of in-

stantaneous diffusion during photobleaching [31]. Our tests using advection-reaction-

diffusion models such as (2.7) and (2.8) reveal similar estimates for velocities towards

the vegetal cortex (c and c+) for the two initial conditions. However, estimates of

velocities in the animal pole direction, as well as some transport rates, are affected

by the uniform disk model assumption. Predictions of the speed of transport c− in

the animal pole direction are underestimated about twenty-fold when the bleaching

dynamics is assumed to be instantaneous (see Figure 2.15). This suggests that the

photobleach process should be taken into account in order to obtain more accurate

orders of magnitude estimates for model parameters.
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Figure 2.13: Estimated diffusion coefficients for β-globin RNA using the instantaneous photo-
bleach and experimental photobleach profile initial conditions (from [1]).

0 5 10
Oocytes (VLE RNA)

0.1

0.2

0.3

0.4

0.5

D
iff

us
io

n 
co

ef
fic

ie
nt

 (
m

2 /s
)

Instantaneous photobleach

0 5 10
Oocytes (VLE RNA)

2

4

6

8

10
D

iff
us

io
n 

co
ef

fic
ie

nt
 (

m
2 /s

)

Postbleach profile

Figure 2.14: Estimated diffusion coefficients for VLE RNA using the instantaneous photobleach
and experimental photobleach profile initial conditions (using Approach 1, from [1]).

2.3.6 Parameter estimation for non-localizing and localizing

RNA

Non-localizing RNA: We first apply the parameter fitting procedure to FRAP

data for particles that are not actively transported in the cell. The attempts to fit

FRAP data for β-globin RNA using the 2-state active transport model (2.7) either

fail or provide inconsistent results across trials. The parameter sweeps result in initial

guesses for the unknown parameters that overestimate velocity c and underestimate
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Figure 2.15: Estimated speeds in the animal pole direction in region 3 for VLE RNA using the
instantaneous photobleach and experimental photobleach profile initial conditions (using Approach
1, from [1]).

diffusion coefficient d, leading to fits with no useful biological conclusions. This

suggests that stationary states are essential in the dynamics of β-globin RNA in the

cytoplasm, and that active transport is unlikely to occur for this nonlocalizing RNA.

We therefore perform parameter estimation separately for FRAP data from each

individual oocyte using reaction-diffusion equations (2.9) and initial conditions (2.12)

corresponding to three bleach spots (see Figure 2.7). Note that given the experimen-

tal postbleach profile (Figure 2.7) and initial conditions (2.12), we use Approach 3

described in §2.3.3, so that for each individual oocyte we consider all three regions

simultaneously. This approach yields consistent results for diffusion coefficient d,

which averages 2 µm2/s (with standard deviation 1.3 µm2/s) across 9 oocyte tri-

als in an experimental set, and 2.8 µm2/s (with standard deviation 2 µm2/s) for a

second set of oocytes. Sample fits of the data are included in Figure 2.16.

The reaction-diffusion model (2.9) is also applied to individual nocodazole-treated

oocyte FRAP recoveries (using Approach 1, see §2.3.3). This predicts an average

RNA diffusion estimate of 2.3 µm2/s (with standard deviation 1.38 µm2/s), similar

to the estimate for non-localizing β-globin RNA.
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Figure 2.16: Sample oocyte β-globin RNA FRAP data for the 3 bleached regions is fit using
Approach 3 and our parameter estimation procedure. Estimated parameters are D = 2.77 µm2/s,
β1 = 0.03 s−1 and β2 = 0.05 s−1. Note that all three bleach spots are fit simultaneously and yield
a single set of estimated parameters for one oocyte (from [1]).

Localizing VLE RNA: VLE RNA localizes at the vegetal cortex of Xenopus

oocytes, and its dynamics are driven by both diffusion and transport by molecular

motor proteins. Therefore, we first fit FRAP data from three regions in the vegetal

cytoplasm (see Figure 2.6A) to the 2-state model (2.7). It is worth noting that

we perform parameter estimation fits for VLE RNA by considering individual data

(Approach 1) or averaged data (Approach 2), as specified. We recall from §2.3.3 that

Approach 1 considers FRAP data from a specific cytoplasm region in an individual

oocyte, and Approach 2 considers FRAP data from a specific region, averaged over

a set of oocytes.

Using Approach 2, we estimate speed c, diffusion coefficient d, unbinding rate β1

and binding rate β2 (see Table 2.4 and fit in Figure 2.17A). Figure 2.17B shows the

fit using Approach 1 to determine the same key parameters for an individual oocyte.

We note that estimates of velocity c and diffusion coefficient d are fairly consistent

across regions in the cytoplasm, and we provide estimates for averages of additional

average experimental data in Table 2.5. The RNA is predicted to be moving towards
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Table 2.4: Estimated parameters for FRAP WT average data (set of 5 oocytes) using Approach
2 and model (2.7) for VLE RNA (from [1]).

Region c (µm/s) d (µm2s−1) β1 (s−1) β2 (s−1)
1 0.05 0.26 2.3e−14 0.006
2 0.09 1.42 0.003 0.0007
3 0.07 0.83 4e−5 1.4e−6
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Figure 2.17: A: Average FRAP data for VLE RNA in Region 2 in 5 WT oocytes is fit with model
(2.7) using Approach 2; estimated parameters are c = 0.09 µm/s, d = 1.42 µm2/s, β1 = 0.003 s−1

and β2 = 8e−4 s−1. B: Sample FRAP data for VLE RNA in Region 3 in an individual WT oocyte is
fit with model (2.8) using Approach 1; estimated parameters are c+ = 0.51 µm/s, c− = 0.91 µm/s,
d = 2.29 µm2/s, α+ = 1e−5 s−1, α− = 2e−5 s−1, δ+ = 0.1 s−1 and δ− = 0.02 s−1.

the cortex in Region 1 (upper vegetal cytoplasm), while in Regions 2 and 3 (mid

and lower vegetal cytoplasm), a higher proportion of particles are diffusing. This is

consistent with the hypothesis in [3], which states that transport by motor proteins

in the direction of the vegetal cortex is more effective closer to the nucleus (Regions

1 and 2).

As outlined in 2.3.3, we then use these estimates to inform initial guesses for

velocity c+ in the vegetal cortex direction and diffusion d in the 4-state model (2.8).

We perform ample parameter sweeps for rates α+, α−, δ+, δ− and velocity c− in the

nucleus direction. Parameter estimation for individual FRAP curves using Approach

1 yields consistent estimates, and the results for averaged FRAP trial data using

Approach 2 are summarized in Table 2.6. We note that the diffusion coefficients are

consistent across regions for all sets of oocytes, and that the velocity towards the
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Table 2.5: Estimated parameters for FRAP WT average data based on 3 sets of 5 oocytes each
using model (2.7) and Approach 2 for VLE RNA, for regions 1-3 in the cytoplasm (see Figure
2.6A). The superscripts I, II, and III correspond to the index of the average FRAP data set under
consideration. Quantities v (effective speed) and σ2 (effective diffusion) are introduced in §3.2.1
and the predicted values are discussed in §4.3.

Region
Parameter 1I 1II 1III 2I 2II 2III 3I 3II 3III

c (µm/s) 0.05 0.12 0.08 0.09 0.1 0.12 0.07 3e−4 0.04
d (µm2s−1) 0.26 1.63 0.37 1.42 1.02 0.99 0.83 2.64 1.85
v (µm/s) 0.05 0.12 0.05 0.02 0.1 0.1 0.002 0.0001 4e−6
σ2 (µm2s−1) 5e−12 1e−7 0.36 3.03 0.005 0.37 8.53 2.62 3.71

Table 2.6: Estimated parameters for FRAP WT average data based on 3 sets of 5 oocytes each
using model (2.8) and Approach 2 for VLE RNA, for all three regions in the cytoplasm (see Figure
2.6). The superscripts I, II, and III correspond to the index of the average FRAP data set under
consideration. The sets considered are the same as used for parameter estimation using model (2.7)
in Table 2.4. Quantities v (effective speed) and σ2 (effective diffusion) are introduced in §3.2.1 and
the predicted values are discussed in §4.3.

Region
Parameter 1I 1II 1III 2I 2II 2III 3I 3II 3III

c+ (µm/s) 0.37 1.06 0.08 1.16 0.9 0.18 2.39 0.62 0.27
c− (µm/s) 0.04 4e−9 4e−6 0.15 0.43 0.009 2.93 1.96 0.89
d (µm2s−1) 1.82 9.85 6.98 7.45 7.446 3.41 1.51 9.9 0.95
v (µm/s) 0.07 0.12 0.05 0.14 0.08 0.077 -0.39 -0.22 -0.18
σ2 (µm2s−1) 0.39 1.22 0.38 1.36 1.68 0.67 4.18 6.5 2.42

animal pole is consistently higher in region 3 compared to regions 1 and 2. A sample

FRAP data fit for an individual oocyte is provided in Figure 2.17B.

We note that the ample parameter sweeps and local refinements allow us to

determine best choices for initial guesses in parameter estimation. Optimizations

carried out in parallel for these guesses yield best parameter fits for velocities and the

diffusion coefficient that are consistent across trials. While the estimated kinetic rates

have a larger variance across individual oocyte fits, they yield consistent biological

predictions when combined in relevant quantities such as fractions of particles in

each state and asymptotic velocity and diffusion (see §4.3).
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2.3.7 Sensitivity analysis

In this section, we illustrate results of a global sensitivity analysis performed on the

input parameters for fitting average VLE RNA data using the 2-state model (2.7)

and the 4-state model (2.8) with Approach 2. Given that parameters such as speed

c, diffusion coefficient d, and reaction rates β1 and β2 are either not estimated in

the literature for this system or their values vary on orders of magnitude, we use a

global method which investigates sensitivity across a whole range of input parameter

variation [55].

In particular, we use the Sobol indices method, which requires the ANOVA repre-

sentation of the model function of interest, and consists of the decomposition of this

function into sums of elementary functions [55, 56]. In this setting, we assume that

a model has n parameters, and that the model results are described by the function

y = f(x), where x = (x1, x2, . . . , xn) is a point in an n-dimensional hypercube with

each xi a parameter of the system [56]. In our case, x consists of the parameters that

we are estimating for each model, and y is the residual of the actual FRAP data and

the FRAP curve generated by the model with these parameters. The ANOVA rep-

resentation below assumes that each parameter xi ∈ I = [0, 1], however in practice

this can easily be extended to the interval appropriate for each parameter.

The Sobol method considers the representation for f(x) in In [56]:

f(x) = f0 +
∑

i

fi(xi) +
∑

i<j

fij(xi, xj) + . . .+ f12···n(x1, x2, . . . , xn) . (2.14)

This is called the ANOVA representation if additionally the summand functions

satisfy [56]: ∫ 1

0

fi1···is(xi1 , . . . , xis)dxk = 0 (2.15)
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for k = i1, . . . , is. This condition leads to a unique representation where fi1···is(xi1 , . . . , xis)

can be expressed as [56]:

f0 =

∫
f(x)dx , (2.16)

fi(xi) =

∫
f(x)

∏

k 6=i

dxk − f0 , (2.17)

fij(xi, xj) =

∫
f(x)

∏

k 6=i,j

dxk − f0 − fi(xi)− fj(xj) , (2.18)

etc.

Assuming that f is square integrable, so are fi1,...,is , so that squaring and integration

of equation (2.14) over In gives [56]:

∫
f 2(x)dx− f 2

0 =
n∑

s=1

n∑

i1<...<is

∫
f 2
i1···isdxi1 . . . dxis =

n∑

s=1

n∑

i1<...<is

Di1···is . (2.19)

Di1···is and D =
∫
f 2(x)dx− f 2

0 are called variances [56], and are used to determine

the Sobol sensitivity indices [55, 56], which allow us to examine both the ranking of

the individual parameter sensitivities and the parameter coupling. The sensitivity

indices are given by:

Si1···is =
Di1···is
D

, (2.20)

so that
∑n

s=1

∑n
i1<...<is

Si1···is = 1.

The meaning of these indices is that Si1···is measures the global sensitivity to the

set of parameters xi1 , . . . , xis . In particular, the indices of interest for our setting are

Si, which measure the global sensitivity of the residual function to each parameter

i, and Si,j, which measure the effect of varying xi and xj simultaneously, in addition

to the effect of the individual variations of these parameters. Following [4], the

parameter space is explored in this implementation of the Sobol method by using
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stochastic collocation [5, 56–58], which means that this method uses sample points

in the hypercube consisting of quadrature points from a tensor product of the 1D

quadrature rule computed with the algorithm in [58].

Figure 2.18 shows the first and second order Sobol sensitivity indices as well as

a visualization tool [4, 5] for these indices for parameter estimates obtained using

the 2-state model on wild-type average FRAP data from Region 2 (mid-cytoplasm)

in the oocytes. Recall that the objective function for this sensitivity analysis is the

residual between the data generated with the tested parameters and the actual FRAP

data. We note that in the figure on the right, the sensitivity of a single parameter

is denoted by a circle, whose diameter is equal to the sensitivity of that parameter

[4, 5]. The fill color of the circles indicates whether the residual increases with an

increase in the parameter (white) or decreases with an increase in the parameter

(black), respectively. The lines connecting two circles show the interaction of two

parameters, where the thickness of the segment is equal to the sensitivity of the

interaction pair. These lines measure how much the results will be changed when

two parameters are changed simultaneously [4, 5].

Figure 2.18 thus predicts that in region 2, the speed and diffusion coefficient of

the mRNA particles are the most sensitive parameters. It is worth noting that in our

simulations, the estimates for speed and diffusion are also the most consistent across

individual oocytes. In addition, in §3.2.2 we introduce quantities such as the effective

speed and diffusion of mRNA particles, which combine these individual parameters

into more complex expressions; in §4.3, we observe that these quantities are consistent

within regions as well. We note that the pairwise sensitivity of speed c with rates β1

and β2 is consistent with the formula for the effective velocity v = c β2

β1+β2
. Moreover,

the sensitivity of the diffusion coefficient d, the reaction rates β1 and β2, and their

interaction is also consistent with the influence of these parameters on the expression
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Figure 2.18: A: Sobol sensitivity indices for parameter estimates in Region 2 of average VLE
RNA data using the 2-state model (2.7). B: Visualization of the sensitivity indices where circles
show single parameter sensitivity, color shows whether the residual increases with an increase in
the parameter (white) or decreases with an increase in the parameter (black), and line thickness
shows sensitivity of the two-parameter interaction pair [4, 5].

for the effective diffusion of the particles: σ2 = 2d β1

β1+β2
+ 2c2 β1β2

(β1+β2)3 .

Given that effective speed v and effective diffusion σ2 are consistent quantities

that determine the dynamics of mRNA particles for large time, an alternative way

to carry out the sensitivity analysis is by considering the sensitivity with respect to

these quantities. Knowledge of v, σ2, β1/β2 and β2 determines the values of speed c

and diffusion coefficient d using:

c = v

(
1 +

β1

β2

)
, (2.21)

d =
σ2

2

(
1 +

(
β1

β2

)−1
)
− v2

β2

, (2.22)

which are necessary in solving the PDE models numerically. Figure 2.19 shows

the results of this sensitivity analysis for the 2-state model using the same average

FRAP data used for the analysis in Figure 2.18. We note that in this approach,

the interactions of the effective speed and effective diffusion with the variations in

transition rates (in particular the binding rate β2) are more evident.
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Figure 2.19: A: Sobol sensitivity indices for parameter estimates in Region 2 of average VLE
RNA data using the 2-state model (2.7). B: Visualization of the sensitivity indices is described in
the legend of Figure 2.18 and in [4, 5].

For the 4-state model, we carried out two sensitivity analyses on two sets of

parameters following the approach in [4, 5]; this allowed us to reduce the computation

time while still assessing the sensitivity to all the reaction rates that we estimate.

We first focused on a subset of 5 parameters (c+, c−, d, α+ and α−), and Figure

2.20 illustrates the sensitivity indices of these parameters and their interactions for

average VLE RNA data in Region 1 (under the nucleus), Region 2 (mid-cytoplasm),

and Region 3 (lower cytoplasm), see Figure 2.6. It is worth noting that the velocity in

the vegetal direction c+ is most sensitive in Region 1, where experiments suggest that

the mRNA transport may be primarily unidirectional [3], while the interaction of

velocities in the animal and vegetal directions (c− and c+) becomes considerably more

sensitive in Region 3, where bidirectional transport is hypothesized [3]. Furthermore,

we recall that parameters α+ and α− correspond to the rates of switching from the

paused state to one of the moving states (see Figure 2.5B); the sensitivity of the

system to these parameters for which there are virtually no values in the literature

highlights the importance of using a parameter estimation approach as described

in §2.3.3 to determine these values. These parameters determine the expected time

spent in a paused state ( 1
α++α−

), which is difficult to obtain experimentally and is

derived in §4.1. Given that the expressions for effective velocity and diffusion are
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Figure 2.20: Visualization of the sensitivity indices for parameter estimates for c+, c−, d, α+ and
α− in Region 1 (left), Region 2 (center) and Region 3 (right) of average WT data using the 4-state
model (2.8). A description of this visualization method from [4, 5] is included in Figure 2.18 and
in the text.

more complex in the case of the 4-state system (see §3.2.2), it is difficult to assess

the insights the Sobol indices provide on these asymptotic quantities for this model.

We then focused on calculating the sensitivity indices for the subset of parameters

c+, c−, d, δ+ and δ−. Figure 2.21 confirms that the interaction between the velocities

in the animal and vegetal directions (c− and c+) is most sensitive in Region 3, closer

to the cortex, as suggested by the results in Figure 2.20 as well. We note that the

pairwise interaction between speed c+ in the moving down state and rate δ+ leaving

this state to a paused state is significant in Regions 2 and 3; these parameters appear

together in the expression for the average run length of the RNA cargo moving down

on microtubules: c+
γ++δ+

, see 4.1; note that γ+ is taken as a fixed parameter from the

literature (see Table 2.2). Given that our predictions of average run lengths agree

well with experimentally-reported average distances covered by kinesin and dynein

motors on microtubule filaments (see §4.3), it is important to note that the model

is sensitive to the interaction between these estimated parameters. Similarly, the

interaction between speed c− in the moving up state and rate δ− leaving this state

to a paused state is considerable in Region 3 of Figure 2.21. Since most movement

in the animal direction is hypothesized to occur in this region, it is not surprising
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Figure 2.21: Visualization of the sensitivity indices for parameter estimates for c+, c−, d, δ+ and
δ− in Region 1 (left), Region 2 (center) and Region 3 (right) of average VLE RNA data using the
4-state model (2.8). A description of this visualization method from [4, 5] is included in Figure
2.18 and in the text.

that this interaction is important in the estimation of the average run lengths in this

direction.

The stochastic collocation method requires choosing a number of collocation

points. Given that sensitivity indices are identical when using 5 and 6 collocation

points, we used 5 collocation points for all sensitivity analyses in this section. For

instance, in the case of the 2-state model with 4 key parameters, this means that

the algorithm for calculating the Sobol indices requires 54 function evaluations. The

parameters were varied between x̂/10 and 10x̂ (where x̂ is the parameter estimate

for x = c, d, β1 and β2), to test the sensitivity of the residual fit with respect to the

magnitude of the estimated parameter values. To obtain Figure 2.19, the effective

speed and diffusion were varied in the smaller range [x̂/2, 2x̂] to ensure that the

diffusion coefficient in equation (2.22) remains positive.



Chapter Three

Large-time Analysis of

Deterministic and Stochastic

Models of mRNA Dynamics
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3.1 Overview of previous results

In this chapter we consider the behavior of mRNA particles undergoing advection,

diffusion, and reaction for large time. The methods in §3.2.1 will allow us to conclude

that the PDE model systems considered have approximate traveling wave solutions

in the limit of large time, so that the position of an mRNA particle is completely

determined by its mean and variance.

These approximations for PDE models of active transport have been previously

explored in [42] using singular perturbation theory and rigorously proven in [43] for

linear reaction-hyperbolic equations. [44] extended the analytical convergence results

to a linear reaction-hyperbolic system coupled with a diffusion equation. [40, 41, 59]

introduce a quasi-steady-state (QSS) method for reducing linear reaction-diffusion-

advection equations to a scalar Fokker Plank equation under certain assumptions on

the magnitude of the state transition rates relative to the velocities of the moving

states. Probabilistic methods are also used to study the approximate traveling wave

solutions for axonal transport in [60, 61]. Specific systems of equations are primar-

ily studied in the context of one-dimensional intracellular transport of organelles

and vesicles along the axon of nerve cells in [38, 39, 62, 63]. Our work in §3.2

goes beyond these approaches by considering a general two-dimensional advection-

reaction-diffusion system with no assumptions on the parameters. The main result

provides analytical expressions for the effective velocity and diffusion of the particles

at large times given arbitrary numbers of advection, reaction, and diffusion states.
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3.2 Large-time Fourier analysis

The results in this section are published in [1].

3.2.1 Calculation of effective speed and velocity for general

models

In this section, our goal is to use large-time Fourier analysis to determine the asymp-

totic behavior of solutions to PDE models of active transport for large time. We have

the following result:

Theorem 3.1. Consider the advection-reaction-diffusion equation system:

∂u(y, t)

∂t
= Au+ C∂yu+D∆u , (3.1)

where u is an n-by-1 column vector of all populations of particles with different

dynamic behavior, and A,C,D ∈ Rn×n. Assume that C and D are diagonal with

real entries corresponding to velocities, and with positive real entries for diffusion

coefficients, respectively, of the n populations. Further assume that A is the singular

matrix of transition rates between the n states, admitting one zero eigenvalue with

algebraic and geometric multiplicity 1.

Given a δ-function or Gaussian initial condition (say, ul(y, 0) = δ(y) for each

population l), the solution for large time for each population has the form

ul(y, t) =
1√

2πa2t
e
− (y+a1t)

2

2a2t ,

where a1 is the effective velocity and 2a2 is the effective diffusion of the particles in
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the moving Gaussian solution. In the limit of t→∞, the effective velocity (denoted

as v) and effective diffusion (denoted as σ2) are given by:

v = a1 =
〈ψ0, Cu0〉
〈ψ0,u0〉

(3.2)

σ2 = 2a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
, (3.3)

where u0 is the eigenvector of the zero eigenvalue of A, ψ0 is the eigenvector cor-

responding to the zero eigenvalue of the adjoint matrix A∗, Ã corresponds to the

projection of matrix A on its range, and C̃u0 =
(
C − 〈ψ0,Cu0〉

〈ψ0,u0〉 I
)
u0 .

Proof. Considering the ansatz

(u1, u2, . . . , un)T (y, t) = eλteνyũ0 , (3.4)

with ν = ik , equation (3.1) becomes:

(A+ νC + ν2D − λI)ũ0 = 0 . (3.5)

Let u0 be the eigenvector of the zero eigenvalue of A, and v be in the gener-

alized eigenspace V corresponding to all non-zero eigenvalues of A. Let ψ0 be the

eigenvector corresponding to the zero eigenvalue of the adjoint matrix A∗.

Taking ũ0 = au0 + v allows us to apply a Lyapunov-Schmidt reduction to equa-

tion (3.5) by projecting it onto the eigenspace V and the space spanned by u0. We

proceed with these projections as follows:
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(i) Projection onto V-space of equation eqn is given by:

eqn− 〈ψ0, eqn〉
〈ψ0,u0〉

u0 .

Here eqn refers to equation (3.5). This gives:

a(A + νC + ν2D − λI)u0 + (A+ νC + ν2D − λI)v (3.6)

− a
〈ψ0, (νC + ν2D − λI)u0〉

〈ψ0,u0〉
u0 −

〈ψ0, (νC + ν2D − λI)v〉
〈ψ0,u0〉

u0 = 0 .

Note that Au0 = 0 and A∗ψ0 = 0 by definition, and 〈ψ0, λv〉 = λ〈ψ0,v〉 = 0

∀v ∈ V .

It can also be shown for the fourth term in (3.6) that

〈ψ0, (νC + ν2D)v〉
〈ψ0,u0〉

= νBνv ∼ O(ν)

using the Cauchy-Schwartz inequality. Here Bν is the operator sending x →
〈ψ0,(C+νD)x〉
〈ψ0,u0〉 . Similarly, the third term in (3.6) is

a
〈ψ0, (νC + ν2D − λI)u0〉

〈ψ0,u0〉
= −aλ+ aνBνu0 ∼ −aλ+O(ν) .

Combining these observations yields:

a(νC+ν2D−λI)u0+(A+νC+ν2D−λI−νu0Bν)v+aλu0−aν(Bνu0)u0 = 0 .
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Simplifying and separating v gives:

v = −a(A+ ν(C − u0Bν) + ν2D − λI)−1(νC + ν2D − νBνu0I)u0

≈ −a(Ã−1 +O(ν + λ))(νC − νBνu0I + ν2D)u0

≈ −aν(Ã−1 +O(ν + λ))

(
C − 〈ψ0, Cu0〉

〈ψ0,u0〉
I +O(ν)

)
u0 . (3.7)

Matrix Ã corresponds to the projection of matrix A on space V , so that Ã

is invertible. The inversion is allowed because the left-hand side (v) is in the

range of matrix A, and C̃u0 =
(
C − 〈ψ0,Cu0〉

〈ψ0,u0〉 I
)
u0 is also readily shown to

be in the range of A. For this, we evaluate the projections onto V-space and

u0-space:

eqn− 〈ψ0, eqn〉
〈ψ0,u0〉

u0

∣∣∣∣
eqn=

(
C− 〈ψ0,Cu0〉

〈ψ0,u0〉
I
)
u0

=

(
C − 〈ψ0, Cu0〉

〈ψ0,u0〉
I

)
u0 ,

〈ψ0, eqn〉
∣∣∣∣
eqn=

(
C− 〈ψ0,Cu0〉

〈ψ0,u0〉
I
)
u0

= 0 ,

so that C̃u0 is indeed in the range of Ã.

(ii) Projection onto u0-space is given by:

〈ψ0, eqn〉 ,

where again eqn denotes equation (3.5)

Here, the projection gives:

〈ψ0, (A+ νC + ν2D − λI)(au0 + v)〉 = 0 .
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Since A∗ψ0 = 0 and 〈ψ0,v〉 = 0, and using v from (3.7) results in:

〈ψ0, (−λI + νC + ν2D − ν2(C + νD)

[
(Ã−1 +O(ν + λ))

(
C − 〈ψ0, Cu0〉

〈ψ0,u0〉
I

)]
u0〉 = 0 .

(3.8)

The linearity of the inner product gives:

−λ〈ψ0,u0〉+ν〈ψ0, Cu0〉+ν2〈ψ0, Du0〉−ν2〈ψ0, CÃ
−1C̃u0〉+O(ν2(ν+λ)) = 0 .

Using the implicit function theorem around (ν, λ) = (0, 0) allows us to write

λ = O(ν), and the higher order term at the end of the equation is O(ν3). Then

λ is given by:

λ = ν
〈ψ0, Cu0〉
〈ψ0,u0〉

+ ν2

[
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉

]
+O(ν3) . (3.9)

Returning to ansatz (3.4), component l of the vector of particle concentrations

u is described by:

ul(y, t) = e(a1ν+
a2
2
ν2+

∑∞
j=3 ajν

j)teνyũ0l(y) , (3.10)

where

a1 =
〈ψ0, Cu0〉
〈ψ0,u0〉

a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
.

Assuming a Dirac delta function initial condition u0l = δ(y) (modeling a single

particle located at y = 0), its Fourier transform in equation (3.10) is ũ0l = 1/(
√

2π).

Similar to the approach in [38], this allows us to calculate the concentration of particle
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population l by taking the inverse Fourier transform:

ul =
1√
2π

∫ ∞

−∞
eik(y+a1t)−a2

2
k2t × e

∑∞
j=3 ajν

jt × 1√
2π
dk .

As in [38], the change of variables ỹ = y + a1t and k̃ = kt1/2 gives:

ul =
1

2π
√
t

∫ ∞

−∞
e
ik̃ ỹ

t1/2
−a2

2
k̃2

× e
∑∞

j=3

aj(ik̃)j

tj/2−1 dk̃ .

In the second term in the product above, j/2−1 > 0, so that the summation vanishes

as t→∞. It is therefore sufficient to calculate:

ul =
1

2π
√
t

∫ ∞

−∞
e
ik̃ ỹ

t1/2
−a2

2
k̃2

dk̃

=
1√

2πa2t
e
− (y+a1t)

2

2a2t .

Since this holds for each population l, the solution of the advection-reaction-

diffusion PDEs for large time thus consists of a spreading Gaussian, and the effective

velocity and diffusion of the particle behavior is given by:

effective velocity = a1 =
〈ψ0, Cu0〉
〈ψ0,u0〉

(3.11)

effective diffusion = a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
. (3.12)

We note that average transport velocity and spreading for the specific equa-

tions modeling neurofilament transport are derived in [38] and [39]. The spreading

Gaussian solutions for large time have also been investigated for reaction-hyperbolic

systems of PDEs in [40, 42–44]. [41] introduces diffusion in the context of tug-of-war
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studies for motor-driven transport, with a focus on diffusion in one particle pop-

ulation. The approach outlined above provides analytical expressions for effective

velocity and diffusion for large times for a system with arbitrary numbers of particles

undergoing diffusion, active transport and reaction.

3.2.2 Expressions for specific models of mRNA dynamics

Effective velocity and diffusion for the 2-state model

We calculate the expressions for effective velocity and diffusion using the 2-state

model of particle dynamics given by equations (2.7).

In this case, C =



c

0


, D =




0

D


 and A =



−β1 β2

β1 −β2


 .

The eigenvectors of A and A∗ in equation (3.9) are given by u0 =



β2/(β1 + β2)

β1/(β1 + β2)




and ψ0 =




1

1


 .

This gives that the O(ν) term in (3.9) is:

a1 =
〈ψ0, Cu0〉
〈ψ0,u0〉

=
cβ2/(β1 + β2)

1
= c

β2

β1 + β2

, (3.13)

which corresponds to the effective velocity in (3.11).
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Similarly, the O(ν2) term in (3.9) is:

a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
.

Note that the non-zero eigenvalue of A is λ1 = −(β1 +β2), and its corresponding

eigenvector is v = (1,−1)T . Then Ãv = λ1v and thus Ã−1 = λ−1
1 = − 1

β1+β2
.

Therefore:

a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
= 2

〈ψ0, (D + (1/(β1 + β2))CC̃)u0〉
1

= 2〈ψ0,

(
D +

1

β1 + β2

C

(
C − 〈ψ0, Cu0〉

〈ψ0,u0〉
I

))
u0〉

= 2〈ψ0,

(
D +

1

β1 + β2

C

(
C − cβ2

β1 + β2

I

))
u0〉

= 2d
β1

β1 + β2

+ 2c2 β1β2

(β1 + β2)3
.

Then

a2 = 2d
β1

β1 + β2

+ 2c2 β1β2

(β1 + β2)3
, (3.14)

which corresponds to the expression for effective diffusion in (3.12).

[61] derive expressions similar to (3.13) and (3.14) for the effective speed and

diffusion of an on/off transport particle using stochastic methods. Our analysis

yields the additional first term in equation (3.14) compared to the expression for

effective spread in [61], which is due to our assumption of diffusion in the off state.
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Effective velocity and diffusion for the 4-state model

We also calculate the expressions for effective velocity and diffusion using the 4-state

model of intracellular transport described by equations (2.8).

In this case, we have C =




c+

−c−
0

0




, D =




0

0

0

D



, and transition

rate matrix

A =




−(γ+ + δ+) 0 α+ β+

0 −(γ− + δ−) α− β−

δ+ δ− −(α+ + α−) 0

γ+ γ− 0 −(β+ + β−)



.

The eigenvectors of A and A∗ in equation (3.9) can also be easily found:

ψ0 = (1, 1, 1, 1)T , and u0 corresponds to the proportion of each population at equi-

librium (see § 3.2.1). u0 can be normalized so that 〈ψ0,u0〉 = 1 .

This gives the O(ν) term in (3.9):

〈ψ0, Cu0〉
〈ψ0,u0〉

= −(α−β−c−δ+ + α−β+c−δ+ − α+β−c+δ− − α+β+c+δ− + α−β−c−γ+

− α−β+c+γ− + α+β−c−γ+ − α+β+c+γ+)

/ (α−β−δ+ + α+β−δ− + α−β+δ+ + α+β+δ− + α−β−γ+ + α−β+γ− + β−δ−δ+

+ α+β−γ+ + α+β+γ− + β+δ−δ+ + α−δ+γ− + α+δ−γ+ + β−δ−γ+ + β+δ+γ−

+ α−γ−γ+ + α+γ−γ+) , (3.15)
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which is the effective velocity in the 4-state example. Note that the above expression

can be calculated using Matlab or Mathematica.

The O(ν2) term in equation (3.9) requires calculation of a2 = 〈ψ0,(D−CÃ−1C̃)u0〉
〈ψ0,u0〉 .

Noting that R(A) = (R(ψ0))⊥, we seek a matrix representation of Ã using a basis in

the complement of ψ0 = (1, 1, 1, 1)T . A choice for this basis is v01 = (1, 0,−1, 0)T ,

v02 = (0, 1, 0,−1)T , and v03 = (1, 0, 0,−1)T , yielding:

Ãv01 = α1v01 + α2v02 + α3v03 ,

Ãv02 = β1v01 + β2v02 + β3v03 ,

Ãv03 = γ1v01 + γ2v02 + γ3v03 .

Note that αi, βi, γi have simple expressions that Matlab’s or Mathematica’s sym-

bolic environments can readily find. This is done by solving equations of the form

V0(α1, α2, α3)T = Ãv01, with V0 = (v01,v02,v03).

Since we are interested in Ã−1C̃u0, we seek x̄ = x̄1v01 + x̄2v02 + x̄3v03 such that

Ãx̄ = C̃u0 . Writing C̃u0 = x = x1v01 + x2v02 + x3v03 gives:

α1x̄1 + β1x̄2 + γ1x̄3 = x1 ,

α2x̄1 + β2x̄2 + γ2x̄3 = x2 ,

α3x̄1 + β3x̄2 + γ3x̄3 = x3 .

Note that xi can also be readily found for this example by solving V0(x1, x2, x3)T =
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C̃u0 in Matlab. The equation for x̄i is therefore:




α1 β1 γ1

α2 β2 γ2

α3 β3 γ3







x̄1

x̄2

x̄3




=




x1

x2

x3



. (3.16)

Given that αi, βi, γi and xi have expressions that can be determined as described

above, this linear system can be solved in Matlab or Mathematica. This recovers

x̄ = Ã−1C̃u0 = x̄1v01 + x̄2v02 + x̄3v03 .

The O(ν2) term in the expression for λ is:

a2 = 2
〈ψ0, (D − CÃ−1C̃)u0〉

〈ψ0,u0〉
= 2

〈ψ0, (D − CÃ−1C̃)u0〉
1

= 2〈ψ0, Du0 − Cx̄〉

= 2ψ0
T (Du0 − Cx̄) . (3.17)

An analytical expression for this term can be found using the symbolic environments

in Matlab or Mathematica.

3.3 Large-time analysis using stochastic processes

3.3.1 Renewal reward theory approach for 2-state models

An alternative approach to obtain approximations of the mean and variance of dis-

placement of an mRNA particle after large time t is to consider the stochastic pro-

cesses theory of renewal rewards.
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In this framework, we let Ti be times spent by a particle in movement, and T̃i+1

times spent by the particle in diffusion. Then we model the distributions of the times

in each of these states as exponential random variables as follows: Ti ∼ Exp(β1),

and T̃i+1 ∼ Exp(β2).

We consider the advection-diffusion cycle Si = Ti + T̃i+1, so that S1 are inde-

pendent and identically-distributed positive random variables and {Si; i = 1, 2, 3...}

forms a renewal process. We note that E[S1] = β1+β2

β1β2
. We further define:

Jn = S1 + S2 + ...+ Sn , (3.18)

for n ≥ 1 and J0 = 0. Jn thus represents the amount of time after n advection-

diffusion state jumps. The assumption of equal number of movement and diffusion

steps is valid in the limit of large target time T considered in our analysis.

We consider

Xt = sup{n : Jn ≤ t} (3.19)

which represents the number of jumps (and state cycles) by time t, and forms a

renewal counting process.

In this setting, the elementary renewal theorem [64] states that

lim
t→∞

E[Xt]

t
=

1

E[S1]
, (3.20)

which means that for large target time T , the expected number of jumps is

E[XT ] = T
β1β2

β1 + β2

=
T

1
β1

+ 1
β2

.
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This makes intuitive sense for the number of steps in each state, given the rates of

jumping between states.

In the context of renewal processes, we can also define a renewal-reward process

as follows:

Yt =
Xt∑

i=1

Wi , (3.21)

where Wi are the rewards associated with each cycle, which can depend on the

renewal process Si. In order to model displacement of mRNA particles through

movement and diffusion states, we define Wi to depend on the components of Si (Ti

and T̃i+1) as follows:

Wi = cTi +G(0, 2dT̃i) , (3.22)

so that YT represents the position of the particle at time T .

Then the elementary renewal theorem for renewal reward processes gives:

lim
t→∞

E[Yt]

t
=
E[W1]

E[S1]
, (3.23)

so that the mean displacement of the particle after large time T is given by:

E[Yt] = c
β2

β1 + β2

T . (3.24)

We note that this agrees with the result using the large time Fourier analysis in

§3.2.2 (see (3.13)).

The variance of the particle displacement can also be approximated for large time

using a consequence of the central limit theorem for renewal processes. The result
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[65] states that

lim
t→∞

Yt ≈ N

(
E[W1]

E[S1]
t,

γ2t

E[S1]3

)
. (3.25)

provided that

γ2 = V ar[E[S1]W1 − E[W1]S1] > 0 . (3.26)

For large time T , this implies that

V ar[YT ] =
γ2T

E[S1]3
.

We proceed by verifying that condition (3.26) is satisfied in our setting for par-

ticles going through movement-diffusion cycles. Since S1 and W1 are not linearly

independent, we cannot immediately conclude that γ2 > 0. We therefore explicitly

calculate γ2:

γ2 = V ar

[
β1 + β2

β1β2

(cT1 +G(0, 2dT̃1))− c

β1

(T1 + T̃1)

]

= V ar

[
c

β2

T1 +
β1 + β2

β1β2

G(0, 2dT̃1)− c

β1

T̃1

]
.

The independence of T1 and T̃1 gives:

γ2 =
c2

β2
2

V ar[T1] + V ar[Y ] =
c2

β2
1β

2
2

+ V ar[Y ] ,

where Y = β1+β2

β1β2
G(0, 2dT̃1)− c

β1
T̃1.

To calculate V ar[Y ] = E[Y 2]− E[Y ]2, we observe that E[Y ] = − c
β1β2

, and

E[Y 2] = E

[
(β1 + β2)2

β2
1β

2
2

G2(0, 2dT̃1) +
c2

β2
1

T̃ 2
1 −

2c(β1 + β2)

β2
1β2

T̃1G(0, 2dT̃1)

]
.

Using that E[G2] = (E[G])2 +V ar[G] = V ar[G] and E[T̃ 2
1 ] = E[T̃1]2 +V ar[T̃1] = 2

β2
2
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yields

E[Y 2] =
(β1 + β2)2

β2
1β

2
2

2d

β2

+
2c2

β2
1β

2
2

− 2c(β1 + β2)

β2
1β2

E[T̃1G(0, 2dT̃1)] .

For the last term E[T̃1G(0, 2dT̃1)], the joint distribution of the exponential and

Gaussian random variables is given by:

fT̃1,G1(0,2dT̃1)(x, y) =





β2

2
√
dπx

e−bx−
y2

4dx , if x ≥ 0

0, else .

Then E[T̃1G(0, 2dT̃1)] =
∫∞

0

∫∞
−∞ xyfT̃1,G1(0,2dT̃1)(x, y)dydx = 0, so that this term

brings no contribution to E[Y 2]. Therefore:

E[Y 2] =
(β1 + β2)2

β2
1β

2
2

2d

β2

+
2c2

β2
1β

2
2

,

and

V ar[Y ] =
(β1 + β2)2

β2
1β

2
2

2d

β2

+
2c2

β2
1β

2
2

− c2

β2
1β

2
2

=
(β1 + β2)2

β2
1β

2
2

2d

β2

+
c2

β2
1β

2
2

.

This gives

γ2 =
(β1 + β2)2

β2
1β

2
2

2d

β2

+
2c2

β2
1β

2
2

, (3.27)

so that γ2 > 0 unless d = c = 0, which is not of interest since it corresponds to

diffusion and active transport playing no role in the particle dynamics.

A consequence of Theorem (3.25) gives the variance formula

V ar[YT ] = γ2 β3
1β

3
2

(β1 + β2)3
T ,
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and using (3.27) yields:

V ar[YT ] = 2d
β1

β1 + β2

T + 2c2 β1β2

(β1 + β2)3
T . (3.28)

This variance for large time also agrees with the result using the Fourier large time

analysis in §3.2.2 (see (3.14)).

3.3.2 Extension and challenges for general models

While the renewal reward theory in §3.3.1 can be applied to confirm the expressions

for effective velocity and diffusion for large time for the 2-state model of dynamics,

it is more challenging to use this approach for models with more than 2 states such

as the 4-state model in Figure 2.5B. In particular, the time in the ith cycle was

easily expressed in the case of the 2-state system as Si = Ti + T̃i+1, however when

considering the 4-state model this first passage time cannot simply be written as a

sum of times in individual states.

To model the 4-state system using stochastic processes, we express the dynamics

as a process with regenerative increments. We consider a continuous-time stochastic

process {X(t) : t ≥ 0} defined on state space S = {0, 1, 2, 3}, where each index cor-

responds to one of the dynamic states modeled: diffusion, movement down, pausing,

and movement up. We assume that the process starts in state 0 (X(0) = 0) and

define renewal times Tn denoting the times when the process returns to state 0. The

inter-renewal times ξn = Tn−Tn−1 are i.i.d., so that the process X(t) is regenerative

over times Tn [66]. We also denote the number of renewals in (0, t] by N(t), which

forms a renewal process with inter-occurrence times ξn [66].
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We also consider the real-valued process {Z(t) : t ≥ 0}, which corresponds to the

reward (displacement) at time t. This process also has regenerative increments over

Tn. The strong law of large numbers then gives the following result:

Assume E[Mn] is finite, where Mn = sup
Tn−1≤t≤Tn

|Z(t)−Z(Tn−1)|, with n ≥ 1. Further

assume that µ = E[T1] and a = E[Z(T1)] both exist and are not both infinite. Then

t−1Z(t)→ a/µ , (3.29)

a.s. as t→∞ [66]. Since in our case the stochastic process X(t) is a continuous-time

Markov chain with reward structure Zj (where j corresponds to the state index), the

calculation of the long-run average reward is simplified to:

lim
t→∞

Z(t)

t
=
∑

j∈S

Zjpj . (3.30)

Here, pj corresponds to the stationary distribution of the embedded Markov chain

of the states [67]. Applying this approach to the 4-state model yields the same ex-

pression for the effective velocity as obtained in the previous section with dynamical

systems methods (see equation (3.15)).

The central limit theorem for regenerative processes provides insight into the

variance of the reward:

Assume that E[M1] and σ2 = V ar[Z(T1)− aT1] are finite, and σ > 0. Then:

Z(t)− at√
t

d−→ N(0, σ2/µ) , (3.31)

as t → ∞ [66]. Therefore, the long run variance of the reward can be obtained by

calculating σ2/µ. Noting that E[Z(t) − at] = 0 from (3.29), this is equivalent to
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calculating the second moment:

E[(Z(T1)− aT1)2] = E[Z(T1)2]− 2aE[T1Z(T1)] + a2E[T 2
1 ] . (3.32)

However, as mentioned at the beginning of this section, the second moments of the

first passage time T1, cycle reward Z1, and the expected value of the product T1Z1 are

challenging to calculate, and there are no existing methods for explicitly determining

these quantities. As suggested in [66], the variance σ2 can nonetheless be determined

by observing the regenerative process Z(t) up to a large time t, and calculating a

confidence interval around the mean a.

We therefore approach this calculation numerically, by setting up a Markov chain

of the states in the 4-state model and keeping track of the renewal time Tn and the

reward at each renewal time Z(Tn). We then estimate the second moment of Z(t)−at

in the following way:

σ2 = E[(Z(T1)− aT1)2] = lim
t→∞

∑N(t)−1
k=1 Z(Tk + 1)− Z(Tk)− a(Tk+1 − Tk)

N(t)− 1
. (3.33)

To calculate the variance of the reward σ2

µ
, we also need the mean cycle length

µ = E[T1]. We can use the following well-known proposition:

If X(t) is a positive recurrent CTMC, then the limiting probability distribution p

exists, is unique, and is calculated as follows:

pj =
E[Hj]

E[Tjj]
, (3.34)

where Hj is the amount of time spent in state j during a cycle, and Tjj is the cycle

length when starting and returning to state j. If we assume that X(0) = 0 (the
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Figure 3.1: Comparison of the reward (displacement) variance predicted with the expressions from
the large time Fourier analysis in §3.2.2 (blue triangles) and the long run reward variance estimated
using observing the Markov process and renewal reward theory (red circles). The parameters used
for the specific values plotted here correspond to FRAP data for VLE RNA in wild-type oocytes
from all 3 regions of the oocytes.

particle starts in diffusion), then we have that

E[T00] = µ =
1

p0(β+ + β−)
.

We therefore calculate the reward variance σ2/µ using FRAP parameter estimates

from 15 trials and plot the values in Figure 3.1. In our computation, we use time

t = 106 s as the large time when we stop the process and compare our predictions

for the variance of the displacement with the values obtained using the analytical

expression derived with dynamical systems methods in §3.2.2. The good agreement

of these estimated effective diffusions further suggests that the analytical approach

proposed in §3.2.1 is a good alternative to potentially costly computations of the

stochastic process up to a large time.
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Notes on an alternative approach

We note that an analytical approach for calculating the effective velocity and diffu-

sion of variable-length stepping of kinesins on microtubules has been developed in

[68]. This approach makes use of renewal reward theory as well, however our at-

tempts to adapt it to our model have revealed that in calculating second moments of

the cycle time or reward, the approach in [68] does not consider certain cross-terms

in the calculations. This observation points to some implicit assumptions in [68] that

do not apply in our setting. In the following, we show that this approach does not

agree with the central-limit theorem result for renewal rewards in the 2-state system.

Following [68], the 2-state system can also be modeled by considering the sequence

(Ti, Zi) of times and rewards (displacements) in each state, which are independent

of each other when conditioned on the particle states Xi. Using the formulation in

[68], the mean and covariance matrices are set up as follows:

µTT |X =

(
1

β1

,
1

β2

)
, (3.35)

µTZ|X =

(
c

β1

, 0

)
, (3.36)

ηTT |X =

(
2

β2
1

,
2

β2
2

)
, (3.37)

ηTZ|X =

(
2c2

β2
1

,
2D

β2

)
, (3.38)

µTT,Z|X =

(
2c

β2
1

, 0

)
. (3.39)

The transition probability matrix for the embedded Markov chain of states is in

this case simply




0 1

1 0


 , and therefore the stationary distribution for the embedded

chain is πX = (1/2, 1/2) (principal left eigenvector). The algorithm in [68] uses the
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following means and variances:

µT = µTT |XπX =
1

2

(
1

β1

+
1

β2

)
, (3.40)

µZ = µTZ|XπX =
c

2β1

, (3.41)

σ2
T = ηTT |XπX − µ2

T =
1

β2
1

+
1

β2
2

− 1

4

(
1

β1

+
1

β2

)2

=

=
3

4β2
1

+
3

4β2
2

− 1

2β1β2

, (3.42)

σ2
Z = ηTZ|XπX − µ2

Z =
c2

β2
1

+
D

β2

− c2

4β2
1

=

=
3c2

4β2
1

+
D

β2

, (3.43)

σT,Z = µTT,Z|XπX − µTµZ =
c

β2
1

− 1

4

c

β1

(
1

β1

+
1

β2

)
=

=
3c

4β2
1

− c

4β1β2

. (3.44)

The effective speed calculation using the renewal rewards approach is then given by

the following expression [68, 69]:

V∞ =
µZ
µT

=
µTZ|XπX

µTT |XπX

=
c/β1

1/β1 + 1/β2

= c
β2

β1 + β2

, (3.45)

which agrees with equation (3.13) derived in § 3.2.2 and equation (3.24) derived in

§ 3.3.1. The effective diffusion calculation is [68]:

D∞ =
1

2µT
(V 2
∞σ

2
T + σ2

Z − 2V∞σT,Z)

= D
β1

β1 + β2

+ 2c2 β1β2

(β1 + β2)3
. (3.46)

Note that this expression has a factor of 2 in the second term, making it different from

the direct renewal rewards calculation in equation (3.28) of §3.3.1 and the Fourier
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Figure 3.2: Comparison of the reward (displacement) variance predicted with the expression in
(3.46) (blue triangles) and the long run reward variance estimated using observing the Markov
process and renewal reward theory (red stars). The parameters used for the specific values plotted
here correspond to FRAP data for VLE RNA in wild-type oocytes from all 3 regions of the oocytes
(the same estimates are used in generating Figure 3.1).

analysis result in equation (3.14) of § 3.2.2.

The same framework applied to the 4-state model also illustrates that the ex-

pression for the effective diffusion does not agree with either the Markov process

numerical observation or the large time Fourier analysis in §3.2.2. Using the same

FRAP parameter estimates from 15 trials used in Figure 3.1, we plot the values given

by the analytical expression in (3.46) derived with this alternative renewal rewards

approach and compare it with the numerical estimates from observing the Markov

process described in § 3.3.2. Figure 3.2 shows that while some trials lead to agree-

ment of the estimated effective diffusions, others result in values that differ from the

numerical observation of the Markov process up to t = 106 s.



Chapter Four

Application of FRAP Parameter

Estimation and Model Analysis to

mRNA Dynamics in Xenopus

Oocytes
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In this chapter, we combine the parameter estimation results in §2 and the analytical

quantities derived in §3 in order to obtain insights into the dynamics of localizing and

non-localizing RNA in different regions of the Xenopus oocyte. In addition, in §4.1

we derive the equilibrium fractions of particles in each state based on the models

of active transport considered in §2 and determine some measures of dissociation

(such as run times and lengths of mRNA particles on microtubules) that are useful

in performing model validation in §4.3.

4.1 Equilibrium fractions of particles in each state

and measures of dissociation

The results in this section are published in [1].

The equilibrium distribution of particles in different states given the general

model (3.1) is readily obtained by solving

Au = 0 . (4.1)

Then the additional assumption:
∑n

i=1 ui = 1 yields the percentages of particles in

each dynamic state at equilibrium.

An alternative approach to modeling particle mobility is by using a continuous-

time Markov chain (CTMC) of the times and states of a particle undergoing intra-

cellular transport. In this framework, we introduce matrix A with Aij the rate of

the transition from state i to state j, which corresponds to the transition matrix

of the CTMC. Solving the linear system (4.1) becomes equivalent to solving the
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equilibrium or balance equations of the Markov process [64]. We recall that the

advection-diffusion 2-state model introduced in §2.3.1 is given by:

ut = cuy − β1u+ β2v (4.2a)

vt = d∆v + β1u− β2v . (4.2b)

In this case, the fractions of particles in each state are simply:

fraction moving =
β2

β1 + β2

(4.3a)

fraction diffusing =
β1

β1 + β2

. (4.3b)

The 4-state model expressions for fractions in each state are computed in a similar

way and depend on all model transition rates.

The CTMC modeling approach is also useful in determining the dissociation-

based quantities that appear in experimental literature, such as distances and times

spent on microtubules before a motor-cargo complex unbinds [68]. Sojourn times of

a homogeneous Markov chain in each state are defined as the mean time spent in

the state before switching to another state. It is well established that sojourn times

of a homogeneous Markov chain i are exponentially distributed with parameter qi,

where qi is the transition rate of leaving state i for any other state [64]. This means

that the mean sojourn times for the 2-state model are:

expected run time moving =
1

β1

,

expected run time diffusing =
1

β2

.

Similarly, the mean times in the states of the 4-state model are given by:
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expected run time up =
1

γ− + δ−
,

expected run time down =
1

γ+ + δ+

,

expected time diffusing =
1

β− + β+

,

expected time pausing =
1

α− + α+

.

The expected run length of motor-cargo complexes on microtubule filaments is

then simply the speed in the desired direction times the mean sojourn time in the

corresponding moving state. For the 4-state model, this yields:

expected run length up =
c−

γ− + δ−
,

expected run length down =
c+

γ+ + δ+

.

4.2 Predictions for non-localizing RNA

Most results in this section are published in [1].

The parameter estimation results in §2.3.6 for non-localizing RNA (β-globin RNA

and VLE RNA in nocodazole-treated oocytes) reveal similar estimates for the diffu-

sion coefficient of the molecules, as illustrated in Figure 4.1. However, to accurately

compare the mobility of the two types of RNA, we must take into account the es-

timates for the transition rates β1 and β2. We therefore combine the parameter

estimates in §2.3.6 and the expressions for fractions of particles in different states in

§4.1 to analyze the mobility of RNA, assuming that the concentration of RNA par-

ticles has reached steady state throughout the time course of a FRAP experiment.

The estimates for rates β1 and β2, together with equations (4.3), suggest that non-

localizing β-globin RNA does not solely diffuse, and may instead spend on average
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Figure 4.1: Diffusion coefficient estimates for nonlocalizing β-globin RNA and VLE RNA treated
with nocodazole in 19 oocytes each.

GGGGGGGGG  GGGGGGGGGG
Oocytes (type indicated)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
in

 e
ac

h 
st

at
e

A

N N N N N N N N N N N N N N N N N N N
Oocytes (type indicated)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
in

 e
ac

h 
st

at
e Fraction diffusing

Fraction pausing

B

Figure 4.2: Predicted fractions of (A) nonlocalizing β-globin RNA (G) in sets of 9 and 10 untreated
oocytes and (B) VLE RNA in 19 nocodazole-treated oocytes (N) in diffusing and stationary states
for individual oocyte trials. Parameter estimation is performed with a three bleach spot initial
condition for β-globin RNA using Approach 3, and with a one bleach spot initial condition for
nocodazole-treated VLE RNA using Approach 1 (see §2.3.3, figure from [1]).

about 47% of time (with standard deviation 32%) in a paused state for the first set

(see Figure 4.2A), and 46% of time (with standard deviation 23%) for the second

set (see Figure 4.3). The predicted fractions of β-globin RNA in each state for two

sets of individual oocytes are displayed in the bar graph in Figure 4.2A, and similar

results are provided in Figure 4.3 for two additional sets of oocytes.

At equilibrium, an average of 92.45% (with standard deviation 18.4%) of RNA

molecules in nocodazole-treated oocytes are stationary, compared to about 46% in

the β-globin RNA case (see Figure 4.2B). We note that the distinct diffusing behavior
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predicted in a few of the oocytes in Figure 4.2B is a result of the diluted fluorescence

signal under nocodazole treatment, where there is a lower effective concentration

of mRNA distributed throughout the cytoplasm rather than an accumulation at

the cell periphery. These results suggest that, in nocodazole-treated oocytes, active

transport of VLE RNA is blocked due to microtubule impairment, and diffusion may

be restricted due to the large size of VLE RNA granules.
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Figure 4.3: Predicted fractions of nonlocalizing β-globin RNA (G) in diffusing and stationary
states for two additional sets of 9 healthy oocytes each (using Approach 3). The sets provided here
and in Figure 4.2A are each from FRAP experiments carried out on different days. The average
diffusion coefficient d for the first set is 1.8 µm2/s (with standard deviation 1.1 µm2/s), and for
the second set 3.1 µm2/s (with standard deviation 1.5 µm2/s). mRNA particles are predicted to
spend on average 60% of time in a paused state (with standard deviation 32%) for the first set,
and 51% of time (with standard deviation 31%) for the second set (from [1]).

4.3 Predictions for localizing RNA and model val-

idation

Similarly, the parameter estimation results in §2.3.6 for localizing VLE RNA reveal

certain spatial differences in the dynamics in the oocyte. Given that localizing RNA

models account for active transport of particles, we begin by surveying the results

for speeds of mRNA as it is transported along microtubule filaments. Figure 4.4

shows that the 2-state model (4.2) predicts smaller speeds in the vegetal direction in
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Figure 4.4: Speed c estimated using the 2-state model and Approach 1 for individual FRAP data
in healthy and nocodazole-treated (N) oocytes. Regions are numbered and colored as in Figure 2.6A
or Figure 4.7A.
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Figure 4.5: Speed in the animal pole direction c− estimated using the 4-state model and Approach
1 for individual FRAP data in healthy and nocodazole-treated (N) oocytes. Regions are numbered
and colored as in Figure 2.6A or Figure 4.7A.

Region 3 than in Regions 1 and 2. In addition, the disruption of microtubules with

nocodazole mostly leads to negligible speeds for VLE RNA in these oocytes. The 4-

state model (2.8) considers two moving states to test the hypothesis of bidirectional

transport; we therefore plot the estimated speeds in the animal pole direction in

Figure 4.5, and note that a considerable number of the trials predict higher speed

in the animal pole direction in Region 3. These results are consistent with the

hypothesis in [3] that the dynamics in the lower cytoplasm may be slower than in

the upper cytoplasm of the vegetal wedge.
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While the results in Figures 4.4 and 4.5 show some differences in the dynamics

in different regions of the cytoplasm, the insights from these graphs is limited since

they do not reflect the overall dynamics of the mRNA molecules. Instead, these plots

show only the speeds of the particles when they are in a specific moving state. In the

following, we outline predictions for mRNA dynamics and model selection that take

into account all parameter estimates (including the transition rates between states

pictured in Figure 2.5A-B) and combine them with the theoretical quantities derived

in §4.1 and §3.2.1.

Mobility of localizing VLE RNA can be investigated using the predicted fractions

of particles in each state derived in §4.1. Using the parameter estimates in §2.3.6, our

results confirm the hypothesis that bidirectional transport plays an important role

in the dynamics of VLE RNA [3], and further suggest that particles might spend

on average about 72.5% of time in a paused state (with standard deviation 21%,

see Figure 4.6). The RNA in nocodazole-treated oocytes are predicted to spend

most of the time in a paused state, consistent with the results using model (2.9) in

Figure 4.2B.
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Figure 4.6: Predicted fractions of localizing VLE RNA in different states for individual oocyte
trials (using Approach 1) in healthy and Nocodazole-treated (N) oocytes. The fits are carried out
using the 4-state model (2.8) (from [1]).
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Given that particle dynamics can be captured using multiple PDE models of

active transport, we investigate the question of model selection for localizing RNA

in Xenopus oocytes. The analysis of these PDE systems in §3.2.1 allows us to

compute and compare quantities of interest predicted by the 2-state model (4.2) and

the 4-state model (2.8). These quantities include the effective velocity and diffusion

of a particle for large time, the percentage of particles in each state at equilibrium,

and the expected run length and time of motor-cargo complexes on microtubules

(that is, how far and how long a motor travels on average before dissociating from

a microtubule). These asymptotic and dissociation-based quantities are mentioned

in the experimental literature [68] and are thus very useful in evaluating models of

active transport.

The effective velocity v and effective spread σ2 for the 2-state model are the

actual long-term speeds and diffusion of particles given the transition rates between

particle states. These quantities are given by (see §3.2.2):

v = c
β2

β1 + β2

, (4.4)

σ2 = 2d
β1

β1 + β2

+ 2c2 β1β2

(β1 + β2)3
. (4.5)

Equivalent quantities can be calculated for the 4-state model using Mathematica [70]

to yield more complex expressions that depend on all the model parameters. These

asymptotic quantities are then evaluated using estimated parameters for averaged

FRAP data: the results are summarized in Tables 2.5 and 2.6. For both the 2-

state and the 4-state models, we note that the effective velocity is either consistently

smaller (2-state model) or negative indicating net movement in the animal pole

direction (4-state model) for Region 3 in the lower cytoplasm. The effective diffusion

also shows a consistent increase in Region 3. Both models therefore support the
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hypothesis of faster movement in the upper vegetal cytoplasm (Regions 1-2) and

higher spread of particles (suggesting bidirectional transport) in the lower vegetal

cytoplasm (Region 3). Note that a negative effective velocity corresponds to net

movement in the nucleus direction. The observations in Tables 2.5 and 2.6 show

results for average FRAP data from different sets of oocytes, but the differences

between regions hold for parameter estimates in individual FRAP data trials as well

(see Figure 4.7B). Given that the FRAP bleaching experiments are performed at the

same time for all three regions in the cytoplasm, we do not expect these differences

to be a result of experimental variability.

The derivation of the effective velocity and diffusion for large time also provides

a tool for comparison of mobility of localizing VLE RNA with mobility of RNA in

cells treated with nocodazole. Figure 4.7B shows predictions for these particle dis-

placement quantities when fitting both types of data to the 4-state model (2.8). We

note that the nocodazole-treated trials (Figure 4.7B, yellow) predict almost no net

movement, as is expected when the microtubule structure is disrupted. In untreated

oocytes, the transport to the vegetal cortex is more significant close to the nucleus

(Region 1, purple) than close to the vegetal cortex (Region 3, red). While we predict

that the majority of untreated oocytes spend similar amounts of time in transport

in the animal and vegetal directions (see Figure S3.6), Figure 4.7B also incorporates

the velocity predictions to highlight directional bias through effective velocity and

diffusion calculations.

The low order of magnitude estimates for binding/unbinding rates using the 2-

state model (see Table 2.4) would lead to the unlikely suggestion that either all

particles are diffusing or they are all being transported at a given location (see equa-

tions (4.3)). By contrast, the 4-state model predicts a more uniform distribution of

particles in different states (see Figure 4.6), with a slight bias to a higher percentage
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Figure 4.7: A: FRAP bleach regions are numbered according to their location: the perinuclear cup
(Region 1), the upper vegetal cytoplasm (Region 2) and the lower vegetal cytoplasm (Region 3).
B: Predicted effective displacement and spread at T = 200s using the 4-state model and Approach
1 for individual FRAP data in healthy and nocodazole-treated (N) oocytes. The distance between
the dots and the zero axis corresponds to the predicted average displacement of a particle towards
the nucleus or the vegetal cortex, and error bars correspond to the predicted spread of displacement
due to diffusion for each trial (from [1]).

of particles moving in Regions 1 and 2. This suggests that the additional complexity

of considering another moving population and a stationary state in the 4-state model

(2.8) is necessary in order to model particle mobility in these experiments.

In addition, we compare predictions of the expected run lengths and times of an

RNA particle on microtubules to experimental results. The average moving run time

and distance for the 2-state model (1/β1, respectively c/β1) are very large compared

to experimental observations of the processivity of molecular motor proteins. Kinesin

and dynein motors have been shown to have average run lengths of roughly 1-2 µm

[20, 21], and velocities of about 0.5-1 µm/s [71], so that they are expected to spend a

few seconds on an individual microtubule filament. These run lengths may be larger

when multiple motors are attached to and transport cargo [53, 54]. The time and

distance spent by a particle on a microtubule for the 4-state model are given by (as

in §4.1):

expected run time up =
1

γ− + δ−
,

expected run time down =
1

γ+ + δ+

,

expected run length up =
c−

γ− + δ−
,

expected run length up =
c+

γ+ + δ+

.
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Figure 4.8: Predicted expected run time (A) and length (B) spent before dissociating from a
microtubule for VLE RNA. The length of the segment extending up corresponds to the time or
distance for movement up a MT towards the nucleus, and the length of the segment extending down
corresponds to the time or distance for movement down a MT towards the vegetal cortex. Purple,
blue and red correspond to regions 1, 2 and 3, respectively, as in Figure 4.7A; yellow corresponds
to nocodazole-treated oocytes (from [1]).

The predictions for these moving states quantities given estimated parameters

for experimental FRAP data from individual oocytes are displayed in Figure 4.8.

We note that run times are on the order of seconds, and run lengths are on the

order of µm, as expected from previous experimental measurements [54]. It is also

worth noting that the results for untreated oocytes (Figure 4.8, purple, blue and red)

further support the hypothesis of bidirectional transport of RNA in the cytoplasm [3],

with a bias to movement in the vegetal cortex direction. In [3], this hypothesis was

revealed through a more complicated photoactivation experiment, since the standard

FRAP data analysis did not account for active transport processes. In the case of

nocodazole-treated oocytes (Figure 4.8, yellow), both run times and lengths are

predicted to be considerably shorter in both transport directions.



Chapter Five

Nonlinear Dynamics: Accounting

for the Microtubule Structure
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Figure 5.1: Illustration of a microtubular structure with density ρ (blue lines). Particles (red
dots) can either be transported with velocity v0 along microtubule filaments, or freely diffuse in
the cytoplasm with diffusion coefficient D0.

5.1 Nonlinear PDE models

5.1.1 Review of previous results

In [72], Bressloff et al. study a stochastic model of active vesicular transport and

its influence on cell polarization. The motor-cargo complex is treated as a particle

that randomly switches between a free diffusion state and a ballistic motion state

with velocity V (θ), where the direction θ is determined by the orientation of the

cytoskeletal filament to which the complex is bound at location (x, z) (see Figure

5.1). Assuming constant speed of movement v0, the velocity is given by [72]:

V (θ) = −v0 cos θex − v0 sin θez .

The main assumption here is that there is a density ρ(x, z, θ) of filaments with

the given orientation θ (see Figure 5.1). In [72], ρ may also be dependent on the

concentration of signaling molecules at the membrane u, so that it can also be time-

dependent.
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The equations for particle movement are given by:

∂p(r, θ, t)

∂t
= −V (θ) · ∇p(r, θ, t)− β

ε
p(r, θ, t) +

αρ(r, θ)

ε
p0(r, t) ,

∂p0(r, t)

∂t
= εD∇2p0(r, t) +

β

ε

∫ π

0

p(r, θ, t)dθ − αρ̄(r)

ε
p0(r, t) , (5.1)

where p0(r, t) denotes the probability density that the particle is at position r =

(x, z) at time t and is diffusing, and p(r, θ, t) is the probability that the particle is

bound to a microtubule at location r and moving with velocity V (θ) [72]. Here

ρ̄(r, t) =
∫ π

0
ρ(r, 0)dθ . This system is an extension of the model initially considered

by Hawkins et al. [73]. In [73], there is an additional assumption that particles

switch very fast between diffusion and active transport by motor proteins, so that a

deterministic advection-diffusion equation is considered instead of equations (5.1).

The small ε in this approach incorporates the assumption that the switching

rates are very fast and diffusion is slow compared to typical motor velocities. In the

limit ε→ 0, the total probability density is conserved. In addition, this assumption

is necessary in order to proceed with the quasi-steady-state (QSS) approximation in

[72], which yields the effective velocity as well as the nonuniform effective diffusion

results summarized in Table 5.1. Given our parameter estimation results in §2.3.6,

these assumptions on diffusion and binding constant parameters do not hold in the

case of mobility of mRNA in Xenopus oocytes. Our goal is thus to use dynamical

systems tools as in §3.2.1 to obtain estimates of the effective velocity and diffusion

of an mRNA particle based on the dynamics of the nonlinear system (5.1) and under

no assumptions of small diffusion coefficient and large reaction rates. In addition,

our analysis does not require an assumption of small microtubule density as in [72]:

a(r) = αρ(r)
β
� 1.
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5.1.2 Large-time Fourier analysis for parallel filaments

We consider the case where filaments are oriented parallel to each other, which is

observed for instance in microtubules of neural growth cones. In this case, [72]

considers the density of filaments as a function of the concentration of signaling

molecules on the membrane: ρ(r, θ, t) = Ku(x, t)δ(θ − π/2) (see Figure 5.2). The

equations for the concentration of particles (or equivalently, the probability of a

particle to be in) the two states (active transport and diffusion) become:

∂p(r, θ, t)

∂t
= −V (θ) · ∇p(r, θ, t)− βp(r, θ, t) + αKu(x, t)δ(θ − π/2)p0(r, t) ,

∂p0(r, t)

∂t
= D∇2p0(r, t) + β

∫ π

0

p(r, θ, t)dθ − αKu(x, t)p0(r, t) . (5.2)

Since θ = π/2, movement can only occur along the vertical dimension: V (θ) =

−v0ez . Letting p̄(r, t) =
∫ π

0
p(r, θ, t)dθ and ρ̄ =

∫ π
0
p(r, θ, t)dθ = Ku(x, t) yields:

∂p̄(r, t)

∂t
= v0ez · ∇p̄(r, t)− βp̄(r, t) + αKu(x, t)p0(r, t) ,

∂p0(r, t)

∂t
= D∇2p0(r, t) + βp̄(r, t)− αKu(x, t)p0(r, t) . (5.3)

We note that these equations are an extension of the linear 2-state model in equa-

tions (2.7). We use variable and parameter notations that are different from §2 and

§3 so as to be consistent and provide a comparison with the approach and results in

[72]. We prove the following theorem for the behavior of solutions to equations (5.3):

Theorem 5.1. Consider the advection-reaction-diffusion equation system in (5.3)

modeling the dynamics of particles with transport restricted to parallel microtubules

in two spatial dimensions. Assuming the spatial domain x ∈ [0, 1] and an infinite
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Figure 5.2: Illustration of a parallel microtubular structure with density ρ(r, θ) = Ku(x)δ(θ−π/2)
(blue lines). Particles (red dots) can either be transported with velocity v0 down along microtubule
filaments, or freely diffuse in the cytoplasm with diffusion coefficient D0.

domain in the z direction, we consider homogenous Neumann boundary conditions:

∂p̄

∂x
(x = 0, z, t) =

∂p̄

∂x
(x = 1, z, t) = 0 ,

∂p0

∂x
(x = 0, z, t) =

∂p0

∂x
(x = 1, z, t) = 0 . (5.4)

Assume that the concentration of signaling molecules is a space-dependent (in the

x dimension) continuously differentiable function u(x). Further assume that the

reaction rates between particle populations satisfy β 6= 0 and β + αKu 6= 0. See

Figure 5.2 for an illustration of the particle dynamics.

Given a δ-function or Gaussian initial condition for p̄ and p0, the effective velocity

and effective diffusion of the particles in the direction of transport (z) in the limit

t→∞ are given by:

v =
αK〈u(x), 1〉

β + αK〈u(x), 1〉v0 ,

σ2 =
β

β + αK〈u(x), 1〉D +
βαK〈u(x), 1〉

(β + αK〈u(x), 1〉)3v
2
0 +

βαKv0

(β + αK〈u(x), 1〉)2 〈u(x), w1(x)〉 ,
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where 〈f(x), g(x)〉 =
∫ 1

0
f(x)g(x)dx and w1 satisfies

D(w1)xx =
αK

β + αK〈u(x), 1〉v0 (〈u(x), 1〉 − u(x)) . (5.5)

Proof.

Insights from u(x) ≡ u

We start with the assumption that the concentration of signaling molecules at the

cortex is a constant, and consider the following ansatz:

p̄(r, t) = v1(x)eλt+ikzũ0 (5.6)

p0(r, t) = v2(x)eλt+ikzṽ0 , (5.7)

Plugging these into equation (5.3) and simplifying yields:

λũ0 = v0ikũ0 − βũ0 + αKu
v2(x)

v1(x)
ṽ0 , (5.8)

λṽ0 = D

(
(v2)xx
v2

− k2

)
ṽ0 + β

v1(x)

v2(x)
ũ0 − αKuṽ0 . (5.9)

The goal is to solve for v2 and v1, so we start by isolating v2

v1
in both equations.

(5.8) gives:

v2

v1

=
λ− v0ik + β

αKu

ũ0

ṽ0

.

Plugging this into (5.9) yields the equation for v2:

λ = D

(
(v2)xx
v2

− k2

)
+ αKu

(
β

λ− v0ik + β
− 1

)
,
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thus

(v2)xx =
1

D

(
λ+ k2D + αKu

(
λ− v0ik

λ− v0ik + β

))
v2 . (5.10)

We therefore seek v2(x) = c1e
r1x + c2e

r2x , with rj = ±il, where

rj =

√
1

D

(
λ+ k2D + αKu

(
λ− v0ik

λ− v0ik + β

))
.

Re-arranging gives:

λ = D(r2 − k2)− αKu λ− v0ik

λ− v0ik + β
,

= −D(l2 + k2)− αKu λ− v0ik

λ− v0ik + β
. (5.11)

Multiplying through by λ− v0ik + β and denoting ν1 = ik, ν2 = il yields:

λ2 + λ
(
−D(ν2

1 + ν2
2)− v0ν1 + β + αKu

)
−D(β − v0ν1)(ν2

1 + ν2
2)− αKuν1v0 = 0 .

(5.12)

We note that this equation has the form f(ν1, ν2, λ) = 0, where f(0, 0, 0) = 0 and f is

a continuously differentiable function. Since ∂f
∂λ
|(0,0,0) = β+αKu 6= 0 by assumption,

the implicit function theorem gives that λ = g(ν1, ν2) near (0, 0, 0) with g a unique

continuously differentiable function, and further that we can consider the expansion

λ = a0+a1ν1+a2ν2+a3ν1ν2+a4ν
2
1 +a5ν

2
2 +. . . . As in §3.2.1, a0 = 0 corresponds to the

dominant eigenvalue. This expansion allows us to obtain expressions for coefficients

a1, a4 and a5 using an approach similar to the one in §3.2.1.
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Spatial dependence u(x)

We are interested in the case where the concentration of signaling molecules at the

cortex has spatial dependence: u(x, t) ≡ u(x). Equation (5.10) still holds, since

plugging in the ansatz (5.6) and (5.7) up to that point did not use the constant

concentration assumption. We start by considering the case of wavenumber k = 0.

Wavenumber k = 0

The case u = u(x) with k = 0 leads to

(Dv2)xx =

(
λ+ αKu(x)

λ

λ+ β

)
v2 (5.13)

= αKu(x)v2 + λv2 − αK
β

λ+ β
u(x)v2 . (5.14)

We assume that λ is small given the analogy with the constant u case. This gives

that 1
λ+β

= 1
β
− 1

β2λ+O(λ2) , so that equation (5.14) becomes:

(Dv2)xx = αKu(x)v2 +

(
λ− αKu(x) +

αKu(x)

β
λ+O(λ2)

)
v2 (5.15)

= λ

(
1 +

αKu(x)

β

)
v2 . (5.16)

We then consider the general Sturm-Liouville equation (pϕ′)′ + qϕ = −λ̃σϕ ,
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where we let:

λ̃ = −λ

p = D > 0

q(x) = 0

σ(x) = 1 +
αKu(x)

β
> 0 .

Applying results from Sturm-Liouville theory, we conclude that there is a smallest

eigenvalue λ̃0, and therefore a largest eigenvalue λ0 for our system. Moreover, since

q(x) ≤ 0 and since the homogeneous Neumann boundary conditions in equations

(5.4) extend to homogeneous Neumann boundary conditions v2(x), we have that

these conditions satisfy:

α1v2(0) + α2v
′
2(0) = 0 ,

β1v2(1) + β2v
′
2(1) = 0

for α1 = β1 = 0 and α2 = β2 = 1, so that α1α2 ≤ 0 and β1β2 ≥ 0. Therefore, we

additionally know that λ̃k ≥ 0 ∀k, and:

λn < λn−1 < ... < λ0 ≤ 0 .

We also know that λ0 = 0 is an eigenvalue with the corresponding eigenvector

ϕ0 = c (a constant), which satisfies equation (5.14) and the homogeneous Neumann

boundary conditions; we therefore conclude that the largest eigenvalue λ0 is given

by λ0 = 0. The assumption of small filament density in [72] (αKu(x)
β
� 1) is not

necessary in this approach.
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Small wavenumber k

For small wavenumber k 6= 0, we consider the equation Lv = 0 , where the operator

L is defined on the space C2(R) and

L(λ, ν)! = D∂2
x +Dν2 + αKu(x)

(
β

λ− v0ν + β
− 1

)
− λ (5.17)

with ν = ik and homogeneous Neumann boundary conditions. Note that the oper-

ator is self-adjoint and

N(L)|λ=0,ν=0 = N(L∗)|λ=0,ν=0 = 1 . (5.18)

Since the null space is finite dimensional at (λ, ν) = (0, 0), we can apply the

Lyapunov Schmidt reduction theory, and project the equation onto both ran(L) and

ran(L)⊥. We write:

v(x) = a+ w(x) , (5.19)

where a is any constant and w ∈ N(L)⊥, thus < 1, w(x) >= 0.

(i) Projection onto the kernel gives:

〈1, Lv〉 = 0 =⇒ 〈1, La+ Lw〉 = 0 , =⇒ (5.20)

〈1, aDν2 + aαKu(x)

(
β

λ− v0ν + β
− 1

)
− aλ〉+

〈1, Dwxx +

(
Dν2 + αKu(x)

(
β

λ− v0ν + β
− 1

)
− λ
)
w〉 = 0 . (5.21)
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Using 〈1, Lw〉 = 〈L∗1, w〉 and noting that 〈c, w〉 = 0 ∀c yields:

−aλ+ aDν2 + aαK

(
β

λ− v0ν + β
− 1

)
〈u(x), 1〉+ αK

(
β

λ− v0ν + β
− 1

)
〈u(x), w〉 = 0 .

(5.22)

(ii) Projection onto the range gives

(
Lv − 〈1, Lv 〉〈1, 1〉 1

)
= 0 (5.23)

=⇒ La+ Lw − 〈1, La〉 − 〈1, Lw〉 = 0 . (5.24)

This further yields:

a

(
Dν2 + αKu

(
β

λ− v0ν + β
− 1

))
− aλ+Dwxx

+

(
Dν2 + αKu

(
β

λ− v0ν + β
− 1

))
w

−λw − aDν2 + aλ− aαK
(

β

λ− v0ν + β
− 1

)
〈1, u〉

−〈Dν2 + αKu

(
β

λ− v0ν + β
− 1

)
− λ,w〉 = 0 . (5.25)

Simplifying gives:

Dwxx +

(
Dν2 + αKu(x)

(
β

λ− v0ν + β
− 1

)
− λ
)
w + aαK

(
β

λ− v0ν + β
− 1

)
u(x)+

−aαK
(

β

λ− v0ν + β
− 1

)
〈u(x), 1〉 − αK

(
β

λ− v0ν + β
− 1

)
〈u(x), w〉 = 0 .

(5.26)

Since we assume small wavenumber k, we expand around ν = ik as follows:

β

λ− v0ν + β
=

β

λ+ β

1

1− v0ν
λ+β

=
β

λ+ β

∞∑

n=0

(
v0ν

λ+ β

)n
. (5.27)
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Therefore

β

λ− v0ν + β
− 1 = − λ

λ+ β
+

v0β

(λ+ β)2
ν +

v2
0β

(λ+ β)3
ν2 +O(ν3) . (5.28)

Plugging (5.28) into equation (5.22) and denoting w = aw̃ simplifies to:

λ = αK

(
− λ

λ+ β
+

v0β

(λ+ β)2
ν +

v2
0β

(λ+ β)3
ν2 +O(ν3)

)
〈u(x), 1 + w̃(x)〉+Dν2 ,

(5.29)

thus

λ(λ+ β)3 + αK〈u(x), v(x)/a〉λ(λ+ β)2 − αKv0β〈u(x), v(x)/a〉(λ+ β)ν

− αKv2
0β〈u(x), v(x)/a〉ν2 +Dν2(λ+ β)3 +O(ν3) = 0 (5.30)

This has the form f(ν, λ) = 0, where f(0, 0) = 0 and f is a continuously differentiable

function. Noting that ∂f
∂λ
|(0,0) = β3 6= 0 by assumption, the implicit function theorem

gives that λ = g(ν) near (0, 0) with g a unique continuously differentiable function,

and further that we can consider the expansion λ = a1ν + a2ν
2 +O(ν3) .

We similarly plug (5.28) into equation (5.26) to obtain:

Dw̃xx +

(
Dν2 − λ+ αKu(x)

(
− λ

λ+ β
+

v0β

(λ+ β)2
ν +

v2
0β

(λ+ β)3
ν2 +O(ν3)

))
w̃

(5.31)

+ αK

(
− λ

λ+ β
+

v0β

(λ+ β)2
ν +

v2
0β

(λ+ β)3
ν2 +O(ν3)

)
(u(x)− 〈u(x), v(x)/a〉) = 0 .

(5.32)

This is again of the form h(ν, w̃(x)) = 0, where h(0, 1) = 0 and λ(0) = 0. Noting that

∂h
∂w̃
|(0,1) = D∂xx and recalling the homogeneous Neumann boundary conditions, this



94

operator is invertible. Therefore, the implicit function theorem gives that w̃ = g′(ν)

and thus that w = g′(ν) near (1, 0) with g′ a unique continuously differentiable

function, and further that we can consider the expansion v2(x) = 1 + w(x) = 1 +

w1(x)ν + w2(x)ν2 +O(ν3) .

Before proceeding with finding the coefficients in the expansions for λ and vi(x)

(i = 1, 2), we examine the recovery of the concentration of particles in each state for

large time given these expansions. Using the inverse Fourier transform gives:

p0(r, t) =
1

2π

∫ δ

−δ
(1 + w(x))eλt+ikzdk

=
1

2π

∫ δ

−δ
(1 + w(x))eik(z+a1t)−a2k2te

∑∞
j=3 aj(ik)jtdk , (5.33)

where δ is small. Making the change of variable k̃ = kt1/2 and z̃ = z + a1t yields:

p0(r, t) =
1

2π
√
t

∫ δ
√
t

−δ
√
t

(1 + w(x))e
ik̃ z̃

t1/2
−a2

2
k̃2

e
∑∞

j=3 aj
(ik̃)j

tj/2−1 dk̃

=
1

2π
√
t

∫ δ
√
t

−δ
√
t

(
1 + i

k̃

t1/2
w1(x)− k̃2

t
w2(x) +

∞∑

j=1

(ik̃)j

tj/2
wj(x)

)
e
ik̃ z̃

t1/2
−a2

2
k̃2

e
∑∞

j=3 aj
(ik̃)j

tj/2−1 dk̃ .

(5.34)

Since we are interested in long-term asymptotic behavior at t → ∞, we note that

the dominant term in the expansion of w(x) is simply 1 and that the last exponential

term in (5.34) converges to 1, so that:

p0(r, t) ≈ 1

2π
√
t

∫ ∞

−∞
e
ik̃ z̃

t1/2
−a2

2
k̃2

dk̃ =
1√

2πa2t
e

(z+a1t)
2

2a2t . (5.35)

Therefore, the Gaussian form of the solution for large time provides the effective

velocity and effective diffusion of the particles, given by a1 and a2, respectively.

The coefficients in the expansion of w(x) are therefore necessary in determining the
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solution behavior only if they appear in the expressions for a1 and a2.

We now consider

λ = a1ν + a2ν
2 +O(ν3) , (5.36)

v2(x) = 1 + w(x) = 1 + w1(x)ν + w2(x)ν2 +O(ν3) . (5.37)

Expanding for small ν now gives:

β

λ− v0ν + β
− 1 =

β

β − ((v0 − a1)ν − a2ν2 +O(ν3))

=
v0 − a1

β
ν − a2

β
ν2 +

(
v0 − a1

β
ν − a2

β
ν2 +O(ν3)

)2

+O(ν3)

=
v0 − a1

β
ν +

((
v0 − a1

β

)2

− a2

β

)
ν2 +O(ν3) , (5.38)

where we performed a Taylor expansion around ν = 0 in the second equality.

Plugging this into the kernel projection (5.22) yields:

−a(a1ν + a2ν
2 +O(ν3)) + aDν2 + aαK〈u(x), 1〉

(
v0 − a1

β
ν +

((
v0 − a1

β

)2

− a2

β

)
ν2 +O(ν3)

)

(5.39)

+ αK

(
v0 − a1

β

)
〈u(x), w1〉ν2 +O(ν3) = 0 , (5.40)

and we set the O(ν) term equal to 0:

−aa1 + aαK〈u(x), 1〉
(
v0 − a1

β

)
= 0 , (5.41)
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thus

a1 =
αK〈u(x), 1〉

β + αK〈u(x), 1〉v0 . (5.42)

Similarly, the O(ν2) term gives:

−aa2 + aD + aαK〈u(x), 1〉
((

v0 − a1

β

)2

− a2

β

)
ν2 + αK

(
v0 − a1

β

)
〈u(x), w1〉 = 0 .

(5.43)

Noting that v0−a1

β
= v0

β+αK〈u(x),1〉 further gives:

a2 =
β

β + αK〈u(x), 1〉D +
βαK〈u(x), 1〉

(β + αK〈u(x), 1〉)3v
2
0 +

βαKv0

(β + αK〈u(x), 1〉)2 〈u(x), w1(x)/a〉 .

(5.44)

To fully determine the expression for the effective diffusion a2, we need to de-

termine the function w1(x) in the expansion (5.37). Returning to the projection

onto the range in equation (5.26) and using approximation (5.38), the O(ν) term

becomes:

aαKu(x)

(
v0 − a1

β

)
+D(w1)xx − aαK〈u(x), 1〉

(
v0 − a1

β

)
= 0 . (5.45)

Therefore, w1 satisfies:

D(w1)xx =
aαK

β + αK〈u(x), 1〉v0 (〈u(x), 1〉 − u(x)) . (5.46)

Since the operator in (5.17) describes the equation for v = v2(x), we turn our
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attention to v1(x) in the ansatz for the active transport population (5.6). Recalling

that v1(x) = αKu(x)
λ−v0ν+β

ṽ0

ũ0
v2(x), and the expansion

1

λ− v0ν + β
=

1

β
+

1

β(β + αKū)
v0ν +O(ν2)

for small ν, we obtain:

v1(x) =
αKū

β

ṽ0

ũ0

+O(ν) . (5.47)

Given the results of the inverse Fourier transform calculation in (5.34) and (5.35),

determining the O(1) term is sufficient and suggests that the active transport popu-

lation admits the same solution as the diffusing population for large time, scaled by

the scalar αKū
β

ṽ0

ũ0
. Note that here ū = 〈u(x), 1〉.

To summarize, the effective velocity and diffusion of the particles for large time

for both populations is given by:

a1 =
αK〈u(x), 1〉

β + αK〈u(x), 1〉v0 ,

a2 =
β

β + αK〈u(x), 1〉D +
βαK〈u(x), 1〉

(β + αK〈u(x), 1〉)3v
2
0 +

βαKv0

(β + αK〈u(x), 1〉)2 〈u(x), w̃1(x)〉 ,

(5.48)

with w1 satisfying D(w1)xx = αK
β+αK〈u(x),1〉v0 (〈u(x), 1〉 − u(x)) . Given a concentra-

tion of signaling molecules at the cell periphery u(x), this fully characterizes the

behavior of the solutions for large time.
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5.1.3 Comparison with previous results

In [72], the equation describing c = p̄+ p0 for parallel filaments becomes:

∂c

∂t
= ηv0u

∂c

∂z
+D(x, t)∇2c(r, t) +Qzz(x, t)

∂2c

∂z2
,

where η = αK
β

. The assumption αKu� β simplifies the analysis and indicates that

the density of microtubule filaments is assumed to be sufficiently small. The authors

mention that a detailed analysis of the interaction between motor-cargo complexes

and the cytoskeletal network is needed in order to provide a biophysical justification

of this assumption [72].

Table 5.1 summarizes the comparison of our results for the effective velocity and

diffusion of particles with active transport on parallel microtubules with the results in

[72]. Recall that ū = 〈u(x), 1〉 and w1 satisfiesD(w1)xx = αK
β+αK〈u(x),1〉v0 (〈u(x), 1〉 − u(x)) .

We also note that our analysis was carried out for u = u(x) and no assumptions on

the scale of the diffusion coefficient and transition rate parameters, while [72] an-

alyzes equations (5.1) for u = u(x) (and extends to u = u(x, t)), large switching

rates and slow diffusion, and under the assumption of small microtubule density

αKu� β.

Table 5.1: Comparison of expressions for effective velocity and diffusion of particles undergoing
diffusion and advection on a parallel array of microtubules using the Fourier analysis approach in
§5.1.2 and the quasi-steady-state approximation approach in [72].

Fourier analysis §5.1.2 QSS approximation [72]
Velocity (z) a1 = αKū

β+αKū
v0 v(r) = αKu

β
v0

Diffusion (z) a2 = D(x, t) +Qzz(x, t) =

D
(

1− αKū
β+αKū

)
+ D

(
1− αKu

β

)
+

αKū
(β+αKū)3βv2

0+ αKu
β3 βv

2
0

βv0

(β+αKū)2 〈αKu(x), w1(x)〉

It is worth noting that the results are very similar; however, the expressions for
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the effective velocity and diffusion in [72] maintain the spatial dependence through

the concentration of signaling molecules u(x), whereas our results depend on the

space-averaged quantity ū = 〈u(x), 1〉 . Excluding this consideration, the assumption

αKu � β yields agreement in the effective velocities in the two approaches. More-

over, this assumption eliminates the third term in our expression for the effective

diffusion and yields an expression equivalent to [72] (see table 5.1). The advantage

of our method is that the complete expressions for effective velocity and diffusion

we derive hold under no assumptions for the density of the microtubules, or for the

magnitude of the reaction rates and diffusion coefficient.

In [72], the space-dependent expression for the effective diffusion is interpreted as

a reflection of the stochastic nature of motor transport, yielding anisotropic diffusion.

This is different from the motivating model for cytoskeleton transport in [73], where

diffusion is assumed to be isotropic in the deterministic advection-diffusion equation

for the concentration of molecules in the cytoplasm. A potential explanation for

the space-dependent diffusion predicted by [72] may lie in the assumptions of the

QSS approximation. In particular, the diffusion coefficient is assumed to be small

(O(ε)) so that moving by active transport allows particles to cover more of the space

than by diffusion [74]; in addition, the transition rates are assumed to be very fast

(O(1/ε)) so that particles switch often between diffusion and movement as they

explore the spatial domain [74]. For 0 < ε � 1, the QSS approximation relies

on the assumption that solutions remain close to the steady-state solution [72, 74].

Therefore, it is intuitive that the effective diffusion under these assumptions will have

little influence from the diffusion state itself and more contributions from frequently

switching to the moving state (which depends on the microtubule density ρ(r, θ), or

in the parallel filaments case on the concentration u(x)). This may explain why our

approach, which does not make these assumptions on the parameters and calculates
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the asymptotic quantities as t→∞, does not reflect spatial differences in the effective

diffusion.

5.2 Numerical simulations of mRNA localization

The previous section provides an analytical approach to determining the large time

mobility behavior of mRNA particles under the assumption of a parallel array of

microtubular filaments. However, Xenopus laevis oocytes display microtubules that

are randomly oriented in the cytoplasm, with a bias towards a radially outward ori-

entation (see [3, Figure 1 and S3]). A choice of the microtubular density ρ(r, θ)

that reflects this outward orientation can be constructed with an approach similar

to the one proposed in [72]. Since the large time analysis is more challenging under

the assumption of radially outward microtubules, here we use a numerical approach

similar to [6] for investigating the mRNA spatial distribution at different times dur-

ing localization. We begin this section by outlining the assumptions we consider in

creating model microtubule structures for this numerical approach. We then briefly

describe the numerical methods used for simulating the PDE models with transport

restricted to these model microtubules and outline the insights our approach pro-

vides on mechanisms of localization. The numerical framework developed allows us

to compare model predictions with results from imaging experiments where fluores-

cently labeled mRNA is microinjected in oocytes in stage III of development [3] (see

Figure 5.3).
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10 hours 24 hours
Figure 5.3: Images of fluorescently labeled VLE RNA microinjected into oocytes [3] and observed
10 hours, respectively 24 hours after injection in the localization process.

5.2.1 Models of microtubule structure

In order to generate model microtubule structures, we adapt the algorithm in [6]

to reflect a 2-dimensional geometry and the assumptions needed for Xenopus laevis

oocytes. Since the mRNA first accumulates under the oocyte nucleus prior to local-

ization, we restrict our attention to a half oocyte (see Figure 5.4) for the purpose of

these simulations.

While in Drosophila oocytes microtubules nucleate at the oocyte cortex [6], in

Xenopus laevis the seeding points appear to be randomly distributed across the

oocyte cytoplasm. Therefore we model the seeding points of the microtubules by

implementing a random distribution of their location in a circular half-annulus (since

the nucleus is excluded from the surface where microtubules are seeded). In partic-

ular, if U1 and U2 are uniform distributions on [0, 1] and rN is the radius of the
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nucleus, we choose:

ρ =
√
U1(12 − r2

N) + r2
N , (5.49)

ϕ = πU2 , (5.50)

so that x = ρ cosϕ and z = ρ sinϕ determine the location of the microtubule seeding

points. Note that the radius of the oocyte is considered to have non-dimensional

length 1.

Research on the distribution of microtubule lengths suggests that the Gamma

distribution may accurately describe the catastrophe lengths of microtubules ob-

served experimentally [19]. We note however that both our results and the findings

in [6] are not changed by considering a simpler exponential distribution of the micro-

tubule lengths. In the following, we therefore consider an exponential distribution of

the filament lengths and further assume that the mean length of the microtubules is

9µm, as informed by [18, 19, 75, 76].

As in [6], we model each microtubule as a sequence of straight segments (each

of some constant length dL), with some variability in the orientations of consecu-

tive segments. The orientation of the first segment is drawn randomly and accepted

only if its direction is pointing inside the allowed geometry and in a radial direction

[6] (half-oocyte annulus in our case). For the remaining orientations, we use the

algorithm in [6] to draw the directions from the von Mises distribution on a circle.

Note that this distribution requires knowledge of a parameter κ corresponding to the

concentration (likelihood) around the previous segment orientation [6]. This param-

eter measures how close the orientation of subsequent segments is to the previous

segments; given that microtubules are neither completely straight nor completely

curled up in both Xenopus and Drosophila oocytes [3, 6, 76, 77], we follow the ap-
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Figure 5.4: Sample microtubular structures with (A) 1000 microtubule filaments and (B) 2000
microtubule filaments (algorithm adapted from [6]).

proach in [6] and choose κ = 18 which reflects the randomness in orientations (see

Figure 5.4). Moreover, the bias for a radially outward orientation of microtubules

in Xenopus oocytes leads to our modeling assumption that half of the microtubules

have random orientations and half have radially outward orientations for the seg-

ments following the first.

Figure 5.4 shows two sample microtubule structures with 1000, respectively 2000

microtubules and reflecting the assumptions in this section. While it is challenging

to quantify the differences between these model microtubule structures and images

of the microtubule cytoskeleton as in [3, Figure S3], these structures compare well

visually with the observed experimental structures. It is worth noting that the

microtubule filaments are dynamic and undergo catastrophes on the time scale of

localization, with mean lifetimes of roughly 5 minutes on average [19]. As a result,

we generate multiple such structures and draw from them at random to set a distinct

background microtubule structure at different times in the simulation of the partial

differential equations models considered.
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5.2.2 Numerical methods and parameter choices

As mentioned in the previous section, we consider a two-dimensional domain consist-

ing of a half-circle with nondimensional radius R = 1 (thus x ∈ [−1, 1] and y ∈ [0, 1]).

This radius corresponds to roughly 150 µm, which is the average radius for oocytes

in stage III of development [3]. In order to carry out simulations of the dynamics of

the mRNA, we further exclude the nucleus from the domain by assuming its radius

is roughly rN = 0.33 (non-dimensionalized), or 50 µm.

Given this domain choice and the model microtubule structures for Xenopus

oocytes, we follow the approach in [6] and calculate the velocity field where active

transport by molecular motor proteins can occur. To this end, [6] sets up a grid

of nondimensional length dG = 0.04, calculates the midpoint of each microtubule

segment, and sums vectorially the orientations of all such segments whose midpoints

are located in the same grid area. After normalizing, this yields a local motor-velocity

vector field Vm [6] representing the direction along which mRNA molecules can be

actively transported by kinesin motors (towards the positive ends of microtubules).

In our simulations, we take the finer grid length dG = 0.02 to capture the dynamics

more accurately and consider model microtubule structures with 5000 filaments each;

Figure 5.4 illustrates cytoskeletons with fewer microtubules for ease in visualization.

Since in the 4-state model we assume bidirectional transport along microtubules, our

work extends the approach in [6] by also considering a motor velocity field Vr with

the opposite orientation from Vm. This additional field can be interpreted as active

transport of mRNA by dynein motors (towards the negative ends of microtubules).

In [6], the model microtubule cytoskeleton also provides insight into the cyto-

plasmic flows driven by kinesin motor transport. In Drosophila oocytes, the mRNAs

are synthesized in the attached nurse cells and transported into the oocyte, so that
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the cytoplasmic flows may be important in the mobility of RNA. By contrast in

Xenopus, all of the mRNAs are synthesized in the oocyte nucleus, thus we do not

consider flows in our simulations of mRNA localization. It is also worth noting that

[6] concludes that the cytoplasmic flows do not play a key role in the localization

process.

The dynamics of mRNA is then simulated using the following equations for the

2-state model:

∂p(r, θ, t)

∂t
= −V (θ) · ∇p(r, θ, t)− βp(r, θ, t) + αρ(r, θ)p0(r, t) ,

∂p0(r, t)

∂t
= D∇2p0(r, t) + β

∫ π

0

p(r, θ, t)dθ − αρ̄(r)p0(r, t) , (5.51)

which are identical to the system (5.2) with no assumptions on the parameters and

with density ρ(r, θ) given by the model microtubule structure. The partial differ-

ential equations are solved using a finite-volume discretization on staggered grids

with no flux boundary conditions [6, 78]. The 4-state system of equations is eas-

ily extended from equations (5.51) to include two active transport states as well as

an additional paused state, and the implementation of the numerical methods ex-

tends the algorithm in [6] to account for these states. In addition to accounting for

bidirectional transport in the 4-state model, our simulations use realistic spatially-

dependent parameters obtained using parameter estimation in the 3 regions where

FRAP is performed in the oocyte cytoplasm (see Figure 4.7A). We assume that Re-

gion 1 extends 20 µm from the nucleus into the cytoplasm, and Region 3 extends

40 µm from the vegetal cortex into the cytoplasm. We further make the assumption

that the region boundaries are set radially.

The initial conditions for the nonlinear PDEs in (5.51) are set to model the initial

early accumulation of mRNA in the perinuclear cup region (under the nucleus) [3].
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Figure 5.5: Initial condition for the mRNA distribution assuming that the mRNA initially lo-
calizes next to the nucleus or is injected experimentally in the perinuclear cup. Color bar for the
constructed color map is included.

We therefore set a uniform positive value initial condition in the region R1 ≤ r ≤ R2

and x1 ≤ x ≤ x2, where R1 = rN = 0.33, R2 = 0.4, x1 = −0.25 and x2 = 0.25, and 0

everywhere else in the domain. Figure 5.5 illustrates this initial condition, and also

includes the Matlab color map created to visualize the results of our simulations and

to compare with [3, Figures 1C, 3D and S2, A-C] and Figure 5.3. We note that in the

following simulations, we pick the color bar consistently the same within simulations,

but the maximum value on the color bar axis may be chosen differently in simulations

where the concentration of mRNA is more spread out in the cytoplasm, for ease in

visualization.

Finally, in §5.2.3 we will be interested in the amount of mRNA localized at

the target location (vegetal cortex). To define this quantity, we introduce δ as a

parameter that determines the width of the target region. In particular, our choice

of δ = 0.9 means that we calculate the fraction of mRNA localized in the annular

region 0.9 ≤ R ≤ 1 right next to the cortex. In addition, we use another parameter

δanchor = 0.95 to separate a potential region where mRNA may get anchored at
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the cell cortex. While in stage 9 Drosophila oocytes anchoring is not required for

localization [6], our findings in the next section show that this mechanism may be

key in achieving the predicted timescales of localization in Xenopus oocytes.

5.2.3 Predictions for mRNA dynamics

We first test the algorithm adapted from [6] using the 2-state model and parameters

estimated using an average FRAP dataset based on 5 wild-type oocytes. Given an

initial condition as in Figure 5.5 for both the moving and the diffusing populations of

VLE RNA, we determine numerically the spatial distribution of VLE RNA over 24

hours of localization using 24 different microtubule structures as in Figure 5.4 (with

5000 microtubules each); we note that this corresponds to randomly changing the

microtubule cytoskeleton every hour during the simulation. Figure 5.6A-C shows the

distribution of mRNA at 4, 10, and respectively 24 hours during localization. Panel

D illustrates the evolution of the fraction of mRNA localized within 1 − δ = 10%

of the cortex, with more than 95% of the molecules localized by 15 hours after the

accumulation at the perinuclear cup. Therefore, the 2-state model predicts that the

localization of mRNA at the vegetal cortex is faster than observed experimentally,

where mRNA localizes in 24-48 hours after injection [3].

To determine the localization dynamics predicted by the 4-state model, we use

the extended algorithm and parameters estimated using an individual FRAP oocyte.

Since this model accounts for bidirectional transport along microtubules, it is cru-

cial to also consider the orientation of the microtubules driving animal and vegetal

transport in the cytoplasm of Xenopus oocytes. The direction of growth of micro-

tubules is denoted as positive, while the opposite direction is denoted as negative.

Immunostaining experiments in [7] find that there exists a population of growing plus
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Figure 5.6: Spatial distribution of mRNA predicted by the 2-state model at (A) 4, (B) 10, and
(C) 24 hours after injection at the perinuclear cup (under the nucleus, see initial condition in
Figure 5.5). (D) illustrates the time evolution of the fraction of mRNA localized 10% from the
vegetal cortex.

ends (for kinesin-mediated transport) at the vegetal cortex of Xenopus oocytes, and

that minus ends (for dynein-mediated transport) are present throughout the vegetal

cytoplasm but appear considerably more dense at the side wedges (see Figure 5.7B).

Therefore, in the simulations for the 4-state model we consider a microtubule struc-

ture for downward transport with uniform nucleation as in Figures 5.4 and 5.7A, as

well as a microtubule structure for upward transport that accounts for the distribu-

tion of minus ends discovered in [7, Figure 6G] as in Figure 5.7B. In the structure

corresponding to upward transport, two thirds of the microtubules are uniformly

nucleated throughout the half-cytoplasm, and a third is concentrated in the side

wedges. In addition, we assume that all microtubules in this structure have an

overall radial orientation. Figure 5.7 shows the density of the microtubules in the
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A B

Figure 5.7: Spatial density of microtubules modeling (A) transport to the vegetal cortex and (B)
transport to the animal pole in agreement with observations in [7] (visualization uses pink color
map in Matlab).

cytoplasm for both of the microtubule cytoskeletons considered.

Figure 5.8 shows that the spatial distributions of mRNA 4 and 10 hours into

localization more closely resemble the imaging experiments in [3, Figures S2] than

the results of the 2-state model (Figure 5.6A-C), but the mRNA is not fully localized

24 or even 48 hours after mRNA accumulation next to the nucleus. We overlay the

microtubule density for animal pole transport from Figure 5.7B to these distributions

to show that the location where we model more intense bidirectional transport limits

the spread of localization, especially in the upper cytoplasm. Figure 5.8D further

confirms that mRNA does not localize in the 24 hours simulated, and shows that

the fraction of localization converges to roughly 38% in a day. As a result, the 4-

state model parameters estimated using FRAP data predict that achieving complete

localization of mRNA in Xenopus oocytes may require anchoring at the cell cortex, as

hypothesized in [3]. We also note that simulations considering the same microtubule

structures for both vegetal and animal pole transport (as in Figure 5.7A) lead to

similar timescales of RNA localization, however the spatial distribution of RNA

extends throughout the vegetal cortex and therefore does not agree with the imaging

experiments in [3] (see also Figure 5.3).
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Figure 5.8: Spatial distribution of mRNA predicted by the 4-state model at (A) 4, (B) 10, and (C)
24 hours after injection at the perinuclear cup (see initial condition in Figure 5.5). (D) illustrates
the time evolution of the fraction of mRNA localized 10% from the vegetal cortex.

We further test the 4-state model under different assumptions for the initial

condition and microtubule orientations. Figure 5.9B-D shows that the distributions

of mRNA throughout localization are not considerably changed when considering

a wider initial condition as in panel A with x ∈ [−0.35, 0.35] (compared to x ∈

[−0.25, 0.25] in Figure 5.5). Though not shown, the fraction of mRNA localized

closely resembles Figure 5.8D. To better understand how the wider initial condition

leads to similar narrow mRNA localization spread, we provide additional plots of the

dynamics 0-4 hours after RNA injection in Figure 5.10. We note that the mRNA

starts spread out under the nucleus (see also initial condition in Figure 5.9A) but

progresses towards a more narrow distribution, due to the assumed locations for

upward radial microtubule transport.
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Figure 5.9: Spatial distribution of mRNA predicted by the 4-state model at (B) 4, (C) 10, and (D)
24 hours after injection at the perinuclear cup, with initial condition given by a wider distribution
of mRNA in the perinuclear cup as shown in (A).

On the other hand, taking the microtubule structure for upward transport to

consist of half randomly-oriented and half radially-oriented filaments changes the

spatial distribution by predicting that the mRNA spreads out more in the lower

cytoplasm (see Figure 5.11A-C). It is worth noting that this is not consistent with

experimental observations in [3], where the width of the mRNA spread at the vegetal

cortex is limited and does not extend to the entire half-oocyte. These results also

suggest that mRNA localization may be dependent on the microtubule orientations in

the cytoplasm, whose organization likely depends on previous cell signaling processes.

Finally, we also consider a setting for the microtubule structure that matches

the model proposed in [3, Figure 7]. Based on experiments that knock down the
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Figure 5.10: Spatial distribution of mRNA predicted by the 4-state model at (A) 0.5, (B) 1, (C)
2, and (D) 3 hours after injection at the perinuclear cup, with initial condition given by a wider
distribution of mRNA in the perinuclear cup as shown in Figure 5.9A.

kinesin and dynein motor proteins separately, [3] suggests a hypothesis of unidirec-

tional vegetal transport in the upper cytoplasm (driven by dynein), and bidirectional

animal and vegetal transport in the lower cytoplasm (driven by kinesin) prior to a

potential anchoring step at the the cortex. We model this proposed set-up using

model microtubule structures for upward transport that are more dense in a wedge

centrally located in the lower vegetal cytoplasm (see Figure 5.12D). The results

in Figure 5.12A-C are similar to the mRNA distributions we observe when using

side wedge densities (see Figures 5.7 and 5.8), and the amount of RNA localized

similarly converges to roughly 38% in 24 hours. However, having upward pointing

microtubules in a central wedge means that mRNA may be slower to accumulate

in the lower vegetal cytoplasm (above the vegetal cortex), with multiple simulations
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Figure 5.11: Spatial distribution of mRNA predicted by the 4-state model at (A) 4, (B) 10,
and (C) 24 hours after injection at the perinuclear cup (see initial condition in Figure 5.5) with
upward microtubule structures assumed to be oriented half randomly and half radially outward.
(D) illustrates the time evolution of the fraction of mRNA localized 10% from the vegetal cortex.

showing no significant mRNA concentration in this location 10-12 hours into localiza-

tion (see Figure 5.12A,B). Additional imaging experiments from the Mowry lab show

mRNA distributed throughout the vegetal wedge 8 hours into localization and seem

to support the set-up in Figure 5.7. Future experiments may provide more insight

into the microtubule cytoskeleton that yields the observed localization patterns.

5.2.4 Insights on anchoring mechanisms

Despite the limited experimental insight into the anchoring mechanism at the cell

bottom, the numerical approach developed in this section allows us to investigate an-
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Figure 5.12: Spatial distribution of mRNA predicted by the 4-state model at (A) 4, (B) 10, and
(C) 24 hours after injection at the perinuclear cup (see initial condition in Figure 5.5) with upward
microtubule structures assumed to be more dense in a central vegetal wedge as in (D).

choring mechanisms that may be responsible for the spatial and timescale of healthy

localization and development in Xenopus oocytes. In particular, modifying the rates

between different dynamical states in an anchoring location (assumed to be 5% from

the cortex in our simulations) can reveal the states of mRNA or mRNA-motor protein

complexes involved in anchoring. Recalling the 4-state model cartoon in §2.3.1 (Fig-

ure 2.5B), we test the anchoring of the paused state by setting rates α+ = α− = 0.

The results are almost unchanged from the baseline simulation with no anchoring

(Figure 5.8), indicating that anchoring of the stationary state alone is not sufficient

to achieve localization in 24-48 hours after RNA injection.

While [6] notes that anchoring is not predicted to play a role in oskar RNA

localization simulations for Drosophila oocytes, this study tests anchoring for a model
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Figure 5.13: Top: Time evolution of the fraction of mRNA localized 10% from the vegetal cortex
when setting δ+ = 0 (A) and γ+ = 0 (B) in the 4-state model. Bottom: Spatial distribution of
mRNA predicted by the 4-state model with δ+ = 0 (C) and γ+ = 0 (D) 10 hours after injection at
the perinuclear cup.

similar to our 2-state model by setting the unbinding rate for the moving state to 0.

In addition, [3] suggests that mRNA that reaches the vegetal cortex may be captured

and stably anchored at this location through the activity of the dynein motor protein,

which has been shown to be able to transition from its transport function to a stable

anchor function for localised RNAs in Drosophila blastoderm embryos and oocytes

[79, 80]. We therefore test whether reducing the transition rates out of the moving

down state (δ+ and γ+) in an anchoring region has an influence on the localization

timescale and patterns predicted.

When setting the rate from the moving down state to the stationary state δ+ = 0

close to the cortex, our simulations show that the fraction of mRNA localized quickly
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Figure 5.14: Time evolution of the fraction of mRNA localized 10% from the vegetal cortex using
the 4-state model with δ+ = 0 and γ+ = 0 (A) and γ+ decreasing linearly from 10γ∗+ to 0 in 24
hours (B) (where γ∗+ is the value of the transition rate in Region 3 of the cytoplasm).

converges to roughly 44%, a small increase from the baseline (no anchoring) case (see

Figure 5.13A). If on the other hand we set the rate from the moving down state to

the diffusion state γ+ = 0, Figure 5.13B shows that the percentage of RNA localized

10% from the cortex increases quickly to 78% and then converges to a stable value

of roughly 45%. Figure 5.13C-D also shows the distribution of the mRNA in the

cytoplasm 10 hours after mRNA injection for both anchoring scenarios.

Setting both transition rates out of the moving down state to 0 (δ+ = γ+ = 0)

in the anchoring region leads to complete localization achieved in 24 hours (see Fig-

ure 5.14A). These simulations suggest that anchoring at the cell cortex may depend

on stabilization of mRNA-motor complexes while moving down towards the vegetal

pole. This hypothesis is supported by experiments in [3, Figure S8], where dynein

motor proteins appear to be co-localized with VLE RNA at the cell cortex 24 hours

into localization. However, the dynamics when setting both transition rates to 0 is

undoubtedly very fast, with 90% of localization occurring in less than 4 hours into

the localization process. Therefore, besides pointing to a necessary anchoring mech-

anism in the vegetal cortex, another potential insight from our simulations is that

the transition rates in this anchoring region may be regulated to vary with space



117

or time. Our approach allows to test such hypotheses; for example, Figure 5.14B

shows the predicted localization when δ+ = 0 and γ+ is set to decrease linearly with

time from 10γ∗+ to 0 over 24 hours of simulation time. It is worth noting that the

evolution of localization is considerably changed in this setting. While images of lo-

calization fraction as in Figure 5.14 are not currently available from experiments in

Xenopus oocytes, this work directs future experimental attention to the mechanisms

of anchoring at the cell cortex and to a potential role of motor proteins in stabilizing

RNA.



Chapter Six

Conclusion
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In this work we have presented several modeling, analytical and computational frame-

works that provide insight into the dynamics of messenger RNA in Xenopus laevis

oocytes. Since complete localization of mRNA is key in healthy development, we

investigated several mechanisms that may be responsible for the accumulation of

mRNA at the cell cortex. The methods developed here can extend more generally

to understand diffusion, active transport, and binding kinetics of molecules in many

living cells.

To summarize from the Introduction, our contributions include:

• FRAP data analysis: Using active transport models for particle dynamics,

we developed efficient algorithms that analyze FRAP data to estimate key

parameters such as velocities of motor-RNA complexes, diffusion coefficients

of free RNA, and transition rates between different dynamical states.

• Large time analysis of transport models: We proved that the dynamics of ac-

tively transported molecules at large time is captured by two quantities, namely

the effective velocity and effective diffusion, and we related these quantities

analytically to parameters extracted from FRAP data using general transport

models.

• Predictions for mRNA dynamics: Our analysis of FRAP data provided support

for the role of paused states and bidirectional transport in Xenopus oocyte

mRNA dynamics.

• Simulations of nonlinear PDE models: Parameter estimates from FRAP data

informed our simulations of transport models on computational model micro-

tubule structures, which allowed the comparison of mRNA spatial distribu-

tions with experimental data and suggested anchoring at the cell cortex is a
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key mechanism for the timescale of localization.

We elaborate on these findings in the following sections.

FRAP data analysis

A new numerical approach to parameter estimation was introduced for FRAP (flu-

orescence recovery after photobleaching) data for models of active transport. These

methods apply to intracellular dynamics in any organism where directed movement

(e.g., by molecular motor proteins) is believed to play a key role in particle localiza-

tion. The advantage of the proposed method is that it can be applied to any FRAP

bleach spot geometry, it does not require normalization of the FRAP data, and it can

take into account the post-bleach intensity profile distribution. This approach allows

us to determine transport parameters for different particle states (active transport,

diffusion, etc.) even though FRAP data does not distinguish between these popula-

tions. As in [35, 36], the model equations we consider cannot be solved analytically

(equations (2.7) and (2.8)) or have a complex initial condition geometry (equations

(2.9) with initial condition (2.12)). This motivates the use of efficient numerical

integration for systems of advection-reaction-diffusion PDEs [50, 51], and of large

parameter sweeps for the model parameters. The computational cost of both these

parameter sweeps and optimization with multiple initial conditions is significantly

reduced through the use of parallel computation. The method is validated using

FRAP recovery curves simulated using the PDE models (Algorithm 1) as well as us-

ing Continuous-time Markov chain models (Algorithm 2) of the dynamical processes

[1].

Initial conditions for these dynamical systems have been shown to be affected by

the temporal limitations of bleaching and scanning in confocal FRAP experiments

[34]. We used the experimental spatial distribution of fluorescence right after pho-
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tobleaching in order to take into account the dynamics that may occur during the

bleaching process. In our experimental setup, these initial postbleach profiles were

well described by the exponential of a Gaussian (Figure 2.8). Our results suggest that

failing to account for the postbleach dynamics in our experiments under-estimates

diffusion coefficients roughly thirty-fold, and can have an impact on the order of

magnitude of parameters such as velocities and rate constants. This observation

is similar to conclusions in studies of diffusion and binding-diffusion models, where

the assumption of negligible diffusion during bleaching leads to significant under-

estimation of the magnitude of the diffusion coefficient [1, 32, 34].

Large time analysis of transport models

While analytical solutions for PDE models of active transport are not available, we

provide rigorous mathematical derivations for solutions of the general system:

∂u(y, t)

∂t
= Au+ C∂yu+D∆u , (6.1)

for large time. Here u is a column vector for the distributions of n populations of

particles with different dynamics, and A,C,D ∈ Rn×n. C is a diagonal matrix of the

velocities of the n populations, while D is a diagonal matrix of their diffusion coeffi-

cients. Considering a Fourier mode ansatz and carrying out the Lyapunov Schmidt

reduction of the resulting equation allow us to obtain expressions for the effective

velocity and diffusion of a particle for large time, given bidirectional movement, dif-

fusion and binding dynamics in an arbitrary number of states. These quantities

correspond to the bulk movement and diffusion of the particles given their transi-

tion rates between states, and provide a useful comparison to observed timescales

of intracellular movement. Model selection is facilitated by the derivations of frac-

tions of particles in each state, as well as of expected run times and lengths of cargo
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on microtubules. Knowledge of biologically-relevant timescales and length scales for

microtubule travel provides comparison and validation for the models of active trans-

port appropriate in different experimental settings (Figure 4.8). This is particularly

important in applications where the regime of the parameter space is not known, so

that simplifications of the PDE models as considered in [27] are difficult. For these

situations, we propose using general PDE models that build up to the complete range

of mechanisms that are believed to influence particle dynamics. These models can

then be further validated and compared using derivations of biological quantities of

relevance as described above [1].

Predictions for mRNA dynamics

In measuring mobility of mRNA using FRAP data from Xenopus oocytes, our results

for effective particle speed and diffusion (see Figure 1.3) confirm the differences in

dynamics between localizing VLE RNA and non-localizing RNA (Figure 4.7). More-

over, we confirm that distinct kinetics and transport directionality can be expected

for RNA transport in different cytoplasmic regions of a single cell, as hypothesized

in [3]. We provide further evidence that bidirectional transport occurs in all regions

of the cytoplasm (Figure 4.8), but the different velocities of the molecular motor

proteins in different areas of the cell suggest that vegetal transport has a more clear

directional bias in the upper vegetal cytoplasm (Regions 1 and 2) than in the lower

vegetal cytoplasm (Region 3) [1]. This is consistent with the finding that RNA is

transported by kinesin motors on a bidirectional array of microtubules close to the

vegetal cortex as suggested in [7].

Simulations of nonlinear PDE models

The parameter estimates for distinct cytoplasm regions also allow us to observe
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mRNA localization through accurate two-dimensional simulations [6] of the trans-

port models with movement restricted to the microtubule cytoskeleton discovered

in [7]. This numerical framework provides a direct comparison with experimentally-

observed patterns of RNA localization as in [3], and further suggests that bidi-

rectional transport and an anchoring mechanism at the cell cortex are required in

order to reproduce time and spatial scales of localization. Our work points to the

need to direct experimental attention to anchoring of mRNA at the cell cortex, and

to the possible role that motor proteins may play in anchoring the molecules at

the periphery. By extending the dynamical systems analysis to the nonlinear PDE

advection-diffusion model:

∂p(r, θ, t)

∂t
= −V (θ) · ∇p(r, θ, t)− βp(r, θ, t) + αρ(r, θ)p0(r, t) ,

∂p0(r, t)

∂t
= D0∇2p0(r, t) + β

∫ π

0

p(r, θ, t)dθ − αρ̄(r)p0(r, t) , (6.2)

we complemented the numerical approach with the analysis of how the mRNA distri-

bution behaves at large time given that microtubules are oriented in an array parallel

to the animal-vegetal axis. A natural next step for this work would be to provide

insight into the influence of the microtubular density ρ(r, θ) on localization patterns

by studying equations (6.2) analytically for different microtubule geometries. In par-

ticular, considering a density of microtubules pointing outward would be relevant to

the Xenopus oocyte cytoskeleton and would provide a comparison to the numerical

and experimental results.
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6.1 Open problems

Our methods for extracting velocity, diffusion and binding rate information from

FRAP recovery data are broadly applicable to other systems where active trans-

port is involved in intracellular dynamics, such as mRNA localization in Drosophila

oocytes [81] or neurofilament transport along axons in neurons [38, 39]. The numer-

ical approach to estimate parameters based on FRAP data can be applied to any

biomolecules that are believed to undergo diffusion, active transport, and binding

kinetics. In addition, the modeling and parameter estimation of FRAP experiments

can also be extended to complementary experiments such as fluorescence correla-

tion spectroscopy (FCS) and photoactivation (PA), which would provide additional

validation of parameters for transport mechanisms [1].

To improve predictions for the mechanisms of mRNA localization in Xenopus

oocytes, our macroscopic models of mRNA localization may be combined with micro-

scopic modeling of interactions of the competing motor proteins kinesin and dynein.

Various studies reviewed in [46] point to hypotheses such as a tug of war between

motors directed in opposite directions as well as a potential co-dependence of motors

in staying attached to microtubules to achieve transport. As a better understand-

ing of the antagonistic behavior of kinesin and dynein motors becomes available

[46], this information may allow for better predictions of how the localization spread

changes and could provide valuable insights into the spatio-temporal regulation of

the molecular motors in the egg cell. In particular, this approach would be useful in

studying abnormal localization when transport by motor proteins is inhibited, and

could be combined with parameter estimation using fluorescence and imaging data

from dynein- or kinesin-impaired oocytes [3].
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In addition, prior to its transport toward the vegetal cortex, mRNA moves from

its uniform distribution throughout the cytoplasm to localize under the nucleus in a

region denoted the perinuclear cup (see Figure 1.2). Our work may provide a starting

point for understanding the mechanisms through which mRNA accumulates next to

the nucleus before localizing in Xenopus laevis oogenesis.
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