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Abstract

The string pendulum consists of a mass attached to the end of an inextensible string

which is fastened to a support. Analyzing the dynamics of such forced supports is

motivated by understanding the behavior of suspension bridges or of tethered struc-

tures during earthquakes. Applying an external forcing to the pendulum’s support

can cause the pendulum string to go from taut to slack states and vice versa, and

is capable of exhibiting interesting periodic or chaotic dynamics. The inextensibility

of the string and its capacity to go slack make simulation and analysis of the system

complicated. The string pendulum system is thus formulated here as a piecewise-

smooth dynamical system using the method of Lagrange multipliers to obtain a

system of differential algebraic equations (DAE) for the taut state.

In order to find a formulation for the forced string pendulum system, we first

turn to similar but simpler pendulum systems, such as the classic rigid pendulum,

the elastic spring pendulum and the elastic spring pendulum with piecewise constant

stiffness. We perform a perturbation analysis for both the unforced and forced cases

of the spring pendulum approximation, which shows that, for large stiffness, this is

a reasonable model of the system. We also show that the spring pendulum with

piecewise constant stiffness can be a good approximation of the string pendulum, in

the limit of a large extension constant and a low compression constant. We indicate

the behavior and stability of this simplified model by using numerical computations

of the system’s Lyapunov exponents. We then provide a comparison of the spring
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pendulum with piecewise constant stiffness with the formulation of the taut-slack

pendulum using the DAE for the taut states and derived switching conditions to the

slack states.
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1

Introduction

The string pendulum, which consists of a mass suspended by a string, is a seemingly

simple system displaying interesting behavior when under the application of various

external forces. Modeling this system can become challenging if we consider that

the string can become slack and investigate its stability behavior. The forced string

pendulum problem introduces changes of states that determine the non-smooth char-

acter of the system, thus leading to ODE’s with switching forms, which might only

be piecewise smooth [12]. Kinematic constraints or physical effects such as friction,

impacts or backlash are known to cause non-smooth phenomena which represent a

challenge for engineers and mathematicians [12]. Moreover, since these problems are

nonlinear, chaotic motions can appear and one can find when they occur.

Simpler systems such as the classic pendulum have been studied extensively. The

planar classic pendulum with vertical periodic forcing was studied in [1], and its

sensitivity to initial conditions was inspected by looking at the system’s Lyapunov

exponents. In [5], it was shown that for large-enough velocities, the string pendulum

will become slack and the mass will follow a parabolic path for projectile motion.

Taut-slack states can occur in this situation, however no external forcing is consid-
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(a) (b)

(c)

Figure 1.1: A string pendulum (a) and its applications such as (b) moored boats
and (c) Newton’s cradle

ered. In [8], the motion of a jogger’s ponytail is modeled using first a rigid string and

then a flexible string under periodic vertical forcing, but the stability of the system

is not discussed. An experimental approach to analyze the behavior of two cables

attached to a rigid frame and shaken horizontally was proposed in [16].

1.1 Applications

We consider basic mechanical systems of pendulums, as well as use the physical

understanding of the system to guide us to mathematical approximations of the

string forced pendulum. This work is motivated by broader applications to ODE’s

with switching forms and also to specific extensions of the forced string pendulum.

One application is Newton’s cradle, which is a desktop toy that shows the effects of

conservation of energy and momentum, as well as those of friction and air resistance.

It usually consists of 5 metal balls which are touching at rest, each suspended by
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strings from a common rigid frame, see Fig. 1.1(c). This toy is usually observed

for its reaction to the action of pulling one or two of its exterior balls and letting

them collide. However, more interesting dynamics involving impacts and chaotic

motion can be noticed when pulling one or two balls sideways so that one of the

strings is taut and one slack [16]. Moreover, the behavior of the system when the

whole frame is moved either horizontally or vertically with a given forcing can be of

interest. Similarly, analyzing the dynamics of structures during earthquakes could

benefit from a study of forced frames.

Another application could include moored boats, which are fastened to a fixed

object by a rope, see Fig. 1.1(b). Boats anchored during storms could undergo

backlash and become loose if the rope is fully extended, thus becoming analogous

to the model of a pendulum with loose string. Another example of a system with

switching behavior is that of suspension bridges, whose loads are hung on suspension

cables. These cables are normally linear at equilibrium, but if shaking occurs they

can slacken, leading to piecewise defined characteristics [6].

1.2 Overview

Our main goal is to explain and analyze the interesting dynamics of the string pen-

dulum with forced frame. We first considered the classic pendulum and calculated

the equations of motion using the approximation given by a spring pendulum with

large spring constant in Chapter 3. This formulation using the spring pendulum was

previously considered in [5], but only for the unforced case. This spring pendulum

approximation is verified by the perturbation analysis for small amplitude oscilla-

tions (Chapter 3.3) and for the limit of large spring constant (Chapter 3.4). We then

adjusted this model to a spring pendulum with piecewise constant stiffness formula-

tion in Chapter 3.5. A similar approach using an elastic pendulum with piecewise

constant stiffness was considered in [8], but the question of stability was only an-
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swered there for lateral perturbations of the motion. To our knowledge, no previous

work was done to model the string pendulum using a system of DAE’s for the taut

state and switching conditions to the slack state (Chapter 4 and 5). Numerical sim-

ulations of these formulations provide phase planes and time profiles of the x and

z components. [1] uses Lyapunov exponents to look at the stability of the planar

classic pendulum with vertical forcing. Using numerical simulations, we determine

Lyapunov exponents for all the formulations of the system to show chaotic and pe-

riodic behavior for different ranges of forcing, which is not accomplished in previous

papers. With the agreement of time profiles and of the Lyapunov exponents, we

show that the classic, spring pendulum and DAE formulations of the rigid pendulum

match very closely. Moreover, the spring pendulum with piecewise constant stiffness

and the taut-slack formulation have similar dynamics for the same forcing amplitudes

(Chapter 6).

We start by analyzing the dynamics of the classic pendulum with forcing in

Chapter 2. Chapter 3 is dedicated to the modeling of the classic and taut/slack

pendulum using an elastic spring pendulum. Chapter 4 shows the modeling of the

classic pendulum system using a DAE system to impose the geometric constraint

of fixed length. The changes that need to be considered when switching to the

taut/slack pendulum system are analyzed in Chapter 5. Lastly, Chapter 6 provides

a comparison of the DAE and spring pendulum models of the taut/slack case. In

appendix A, we calculate the switching conditions for the three-dimensional case of

a string pendulum, which will be useful in future work.

4



2

Preliminaries and background results

2.1 Review of the Euler-Lagrange formulation

We begin by describing the method used to derive the equations of motion of simple

problems involving a pendulum.

Hamilton’s principle is an approach for formulating the governing equations for a

system. These equations are equivalent to those derived from Newtonian mechanics

and can thus be used in cases where Newton’s equations are difficult to obtain directly

[9].

We begin by defining L as the Lagrangian, which equals

L � T � U, (2.1)

where T is the kinetic energy and U is the potential energy of the system. This

becomes meaningful in the mechanical problems where Hamilton’s principle of Least

Action is applied. The principle states that the dynamics of a physical system are

determined by a variational problem for a functional based on a single function: the

Lagrangian defined above. The principle of least action gives equations of motion of

a mechanical system for the dynamical solution that minimizes the action integral,
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defined as
³T
0
Ldt.

The mathematics involved in carrying out the principle is given by the theory of

calculus of variations, which deals with finding extremes of functionals. The goal is

thus to find those functions that are local minimizers/critical points of the functional

[11].

Now consider the functional I defined as

I �
» b

a

Lpt, y� � εh,
dy�
dt

� ε
dh

dt
qdt, (2.2)

with y� being the optimal solution, we can expand the function under the integral

as a Taylor series for εÑ 0 (h is a variation as a function of t).

The functional becomes

I �
» b

a

L�dt� ε

» b

a

�BL
By h�

BL
B 9y

9h



dt�Opε2q.

To find a critical point of the above, we need to set the second integral equal to

0 for all variations hptq:

» b

a

�BL
By h�

BL
B 9y

9h



dt � 0.

Integration by parts leads to

BL
B 9y
h

����
b

a

�
» b

a

�BL
By �

d

dt

BL
B 9y



h � 0

Using that hpaq � hpbq � 0, the boundary terms vanish and using the fundamen-

tal lemma of calculus of variations, we obtain the differential equation

BL
By �

d

dt

�BL
B 9y



� 0. (2.3)
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Figure 2.1: A schematic diagram of a pendulum with vertical motion z̄ptq of the
pivot

which is the Euler-Lagrange equation of the system.

This approach will be used to find the equations of motion of the pendulum

formulations considered.

2.2 Reference model: The classic pendulum

We will first seek to find the equations of motion of a classic planar pendulum (with

rigid, non-stretchable string) attached to a support subjected to a prescribed vertical

motion z̄ptq of the pivot point, see Fig. 2.1.

We start with the geometric description for accessible positions of the pendulum

mass,

xptq � L sin θptq, zptq � z̄ptq � L cos θptq , (2.4)

where L is the length of the pendulum and the reference frame is stationary.

The kinetic and gravitational potential energy of the system are defined as

T � 1

2
mp 9x2 � 9z2q, U � mgz ,

where m is the mass of the pendulum.

We will use Hamilton’s principle to formulate the governing equations for the

system [9], in terms of the Euler-Lagrange equations [11]:

7



BL
Bu � d

dt

�BL
B 9u



� BF
B 9u

, (2.5)

where uptq represents the state of the system and F is a Rayleigh dissipation function.

This function describes damping terms in the equation of motion, which account for

friction and other non-conservative effects might exist in the system.

In our case, the Lagrangian takes the form

L � T � U � 1

2
mpL2

9θ2 � 9z̄
2 � 2L 9θ 9z̄ sin θq �mgz̄ �mgL cos θ , (2.6)

and the dissipation function is F � β
2
|v|2, where v is the velocity and |v|2 � 9x2� 9z2.

Now we can proceed to finding BL
Bθ

and BL
B 9θ

and plugging them in (2.5) yields the

equation of motion for θ:

:θ � �g � :z̄

L
sin θ � β

m
9θ � β

mL
9z̄ sin θ . (2.7)

The classic pendulum system given by equation (2.7) will be used as a comparison

to check the behaviors produced by the other models.

If we consider

z̄ptq � A cospωtq , (2.8)

and small damping β, then we can analyze the stability of the solution of equa-

tion (2.7). Different amplitudes A of the vertical forcing will produce qualitatively

different solutions. The equations are solved numerically using the fourth order

Runge-Kutta method [13]. Fig. 2.2 shows the phase plane for a periodic and a

chaotic solution respectively. A few values of the parameter A (we will note that

these values correspond to spikes to 0 in the Lyapunov exponent plot in Fig. 2.4)

result in more complicated oscillations in the phase planes which are part of a series

of bifurcations between periodic and chaotic solutions. An example is given in Fig.
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Figure 2.2: Phase planes of x vs. 9x for the forced damped pendulum for amplitude
A � 4 m (periodic oscillation), respectively A � 11 m (chaotic motion) using equation
(2.7). Parameter values used are L � 5 m, g � 9.8 m/s2, ω � 0.9

a
g{L s�1 and

damping β � 0.01 kg/s.
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ẋ
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Figure 2.3: Phase plane of x vs. 9x for the forced damped pendulum for amplitude
A � 8.35 showing oscillations using equation (2.7). Parameter values used are L � 5,
g � 9.8, ω � 0.9

a
g{L and damping β � 0.01.

2.3 for A � 8.35. These behaviors hold systematically for most initial conditions the

system can be started on and seem to depend on the forcing parameter value. We

thus vary the forcing amplitude A and fix the other parameters to typical values,

such as small damping β. A more thorough study of these equations of motion could

take into account dependence on other parameter values.

Considering equation (2.7) with no damping (β � 0) and external forcing z̄ as in
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equation (2.8) yields

:θ �
�
g

L
� Aω2

L
cosωt



sin θ � 0 .

By linearizing this equation for small angles, we obtain:

:θ �
�
g

L
� Aω2

L
cosωt



θ � 0 , (2.9)

which is the linear Mathieu equation with the term �Aω2

L
cosωt serving as a para-

metric excitation of the system. The Mathieu equation is actually closely related

to the phenomenon of parametric resonance which occurs in the mechanical systems

where a system is parametrically excited and oscillates at a resonant frequency [7].

2.3 Lyapunov exponents

Lyapunov exponents are a way of qualitatively and quantitatively characterizing

systems’ dynamical behavior. Lyapunov exponents determine a system’s exponential

divergence or convergence of nearby orbits in phase space. This is a way of showing

sensitive dependence on initial conditions, meaning that neighboring orbits separate

exponentially fast [15] and that solution behavior is thus unpredictable. Having one

or more positive Lyapunov exponents defines a system as being chaotic [15], [17].

It is therefore important to identify the largest Lyapunov exponent of a system.

Consider the general ODE system

du

dt
� fpu, tq . (2.10)

In order to compute its largest Lyapunov exponent, we consider a trajectory in phase

space, u0ptq, given by the nonlinear equations of the system (2.10) applied to some

initial condition. If we consider another trajectory starting nearby, u1ptq, and set

10



∆u � u0�u1, then the logarithm of this difference represents the rate of exponential

divergence or convergence: σ � ln |∆u|{∆t. When the length of the vector between

the reference trajectory and a trajectory starting nearby becomes large, we choose

a new trajectory close to the reference trajectory and repeat the process on the

next time interval. Given rtn, tn�1s time intervals considered, the largest Lyapunov

exponent is given by the average growth rates for all of the time intervals [17]:

σmax � lim
kÑ8

1

k

¸
k

1

tk�1 � tk
ln
|∆uptk�1q|
|∆uptkq| . (2.11)

The following sections describe some approaches given in the literature or ad-

justed for our purposes for determining either the full spectrum or the largest Lya-

punov exponent of a system.

2.3.1 Wolf method [17]

In [17], Wolf suggests a method that uses a phase space and tangent space approach

and that can be applied to determine the largest Lyapunov exponent of a system.

A ”fiducial” trajectory is obtained by applying the nonlinear equations of motion

of the system on some initial conditions. Then we apply the linearized equations of

motion of the same system on points infinitesimally close to the fiducial trajectory.

The nonlinear equations are then integrated (using Runge-Kutta) for some post-

transient initial conditions. At the same time, the linearized equations of motion are

integrated for n different initial conditions which represent a system of n orthonormal

vectors. To avoid further singularities and computer limitations, the Gram-Schimdt

reorthonormalization (GSR) process will be applied repeatedly on this system of

vectors [17].

If the initial orthonormal system is given by tv1, ...,vnu the Gram-Schmidt pro-

cess is applied to these vectors to derive a new orthonormal set tv1
1, ...,vn

1u in the

11



following way:

v1
1 � v1

||v1|| ,

v2
1 � v2 � pv2,v1

1qv1
1

||v2 � pv2, v1
1qv1

1|| ,

... (2.12a)

vn
1 � vn � pvn,v

1
n�1qv1n�1 � ...� pvn,v

1
1qv11����vn � pvn, v

1
n�1qv1n�1 � ... � pvn, v

1
1qv11

���� .
We note that while an equation like (2.7) would only require n � 2 trajectories,

other equations of motion require larger n, so that the methods proposed here apply

to the general case. We also mention that most of our calculations of the largest

Lyapunov exponent use the Wolf method unless otherwise noted.

2.3.2 Rugh method [2]

While the Wolf method gives convergence of Lyapunov exponents to literature values

(for systems such as the Lorenz equations), Rugh proposes an improved method of

computing the full or partial Lyapunov spectrum associated with a dynamical system

given by differential equations [2]. The method described in this paper introduces

a stability parameter β and expands the system with an orthonormal k-dimensional

system of vectors and a Lyapunov vector such that the system is continuously Gram-

Schmidt orthonormalized (k is the number of Lyapunov exponents that the method

will output). Therefore, the Gram-Schimdt reorthonormalization need not be per-

formed anymore in the algorithm.

We let k � n and the system of n orthonormal vectors be denoted by te1ptq, ..., enptqu
where pei, ejq � δij 1 ¤ i, j,¤ n with p�, �q the inner product. The Jacobian matrix

of the system’s differential equations will be denoted by J . The method introduces

12
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Figure 2.4: Parameter dependence of the largest Lyapunov exponent for a range
of forcing amplitudes for the forced damped pendulum using the method in [17].
Parameter values used are L � 5.0, g � 9.8, ω � 0.9

a
g{L, β � 0.01.

the matrix elements

Jlm � pel, Jemq

and the stabilized matrix elements

Lmm � Jmm � βppem, emq � 1q , Llm � Jlm � Jml � 2βpel, emq ,

where β is the stability parameter mentioned above. The system is also expanded

with the Lyapunov vector Λ � tΛ1ptq, ...,Λnptqu.
The extended dynamical system that needs to be integrated now is, from [2]:

9x � vpxq , (2.13a)

9em � Jem �
¸
l¤m

elLlm , (2.13b)

9Λm � Jmm , (2.13c)

for m � 1, ..., n.

According to [2], if we choose a stability parameter such that β ¡ �λk, then the

n Lyapunov exponents can be derived by the formula

lim
tÑ8

1

t
Λmptq � λm (2.14)
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for m � 1, ..., n. This method is thus applied to determine the complete set of Lya-

punov exponents of a system.

2.3.3 Limit definition for largest Lyapunov exponent

The methods for determining the Lyapunov exponents outlined in [17] and [2] use

linearized ODE’s for u1. These methods could be extended and applied to the system

of DAE’s (differential algebraic equations) to be later discussed in section 4 by using

linearized DAE systems; however, this would require more work since the Wolf and

Rugh methods were designed for ODE systems. In order to compute the exponential

divergence or convergence of trajectories in such a situation, we write, for rtk, tk�1s in

a sequence of time intervals: ∆uptk�1q � ∆uptkqeσptk�1�tkq. When 0.1   |∆uptk�1q|

|∆uptkq|
 

10 ceases to be satisfied, which means that the length of the vector between the

two points has become too large or too small, the next time interval is considered:

rtk, tk�1s is reset with k Ñ k � 1. The largest Lyapunov exponent is thus given by

equation (2.11), rewritten here for reference:

σmax � lim
kÑ8

¸
k

1

k

1

tk�1 � tk
ln
|∆uptk�1q|
|∆uptkq| .

It is worth noting that this method, just like the one proposed by Wolf, determines

only the largest Lyapunov exponent of the system.

In Fig. 2.4 we plot the largest Lyapunov exponent of the system versus the

amplitude of the vertical forcing. We note how different values of A correspond

to a chaotic (A � 12) or periodic (A � 1) solution, and the phase planes in Fig.

2.2 correspond to intervals of stable (A � 4) and unstable (A � 11) amplitudes.

Moreover, the spikes going close to 0 in Fig. 2.4 may correspond to periodic systems

that are not chaotic, as shown in Fig. 2.3 for amplitude A � 8.35. The Lyapunov

exponents will provide us with a way to compare different ways of modeling the

14



pendulum systems considered. We calculate the Lyapunov exponents of the systems

using the method described by Wolf in [17], with the exception of Chapter 4 and

Chapter 6, where the DAE system of equations requires the use of equation (2.11).

We propose the conjecture that comparable models will be similar in their stability

behavior and thus have similar Lyapunov exponents, σmaxpAq.
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3

The Spring Pendulum

The derivation of (2.7) started with the geometric constraint on the length of the

pendulum imposed through equation (2.4). As we will see later, imposing the con-

straint of fixed length after writing the Euler-Lagrange equations of a system creates

more mathematical challenges. But such an approach will nevertheless allow for

generalizing the problem, so it is of value for our later analysis. As a comparison

problem, we first consider the dynamics for a spring pendulum, where the pendulum

length can vary. Such a model is considered in [5], though no external force is applied

to the system in that case.

In this chapter, we derive the equations of motion in polar coordinates for the

spring pendulum formulation of the forced classic pendulum (section 3.1). This

approximation is further analyzed in section 3.2 for the unforced case and in section

3.3 for the forced case. In both cases, we consider small amplitude oscillations for

angle θ and derive equations of motion for the simplified system, which are then

compared to the classic pendulum from Chapter 1. In section 3.4, we consider the

spring pendulum system with a very large spring constant and show that its equations

16



of motion reduce to equation (2.7) for the forced damped classic pendulum. Section

3.5 introduces the first formulation of the string pendulum using a spring pendulum

with piecewise constant stiffness, which will be compared to the DAE formulation in

Chapter 6.

3.1 The Spring pendulum with vertical forcing

The spring pendulum can be compared to the rigid pendulum model while avoid-

ing the exact geometric constraint that comes with a differential algebraic equation

(DAE, to be considered later in Section 4). This system is also called a general

“elastic pendulum” in [14].

The spring pendulum is a physical system with a mass connected to a spring so

that the motion that results has characteristics of a simple pendulum as well as a

spring. The spring is restricted to lie in a straight line, which can be achieved by

wrapping the spring around a rigid massless rod [10]. We will consider such a spring

pendulum with a large Hooke’s law spring constant k which makes it moderately stiff,

as well as a damping constant β which helps us control the stretching oscillation of

the spring. We consider a pendulum made up of a spring with mass m on the end

and let the angle it makes with the vertical be denoted by θptq. The pendulum length

L̃ � L � mg
k

is selected so that the equilibrium length at θ � 0 is L (see Fig. 3.1).

The spring will thus have length L� rptq at time t.

As before, the spring pendulum in 2 dimensions has an imposed vertical forcing

which represents a motion of the pendulum pivot point, z̄ acting on it vertically. The

results obtained will be compared against the behavior determined in equation (2.7).

The Lagrangian is

L � T � U � 1

2
mp 9x2 � 9z2q �

�
mgz � 1

2
k
�
r � mg

k

	2
�
, (3.1)
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Figure 3.1: This figure provides a schematic diagram of a spring pendulum with
un-stretched length L̃, equilibrium length L and stretch r, making an angle θ with
the vertical

with x and z defined in this case as

x � pL� rq sin θ , z � z̄ � pL� rq cos θ . (3.2)

Now we can apply the Euler-Lagrange equations with respect to r and θ. We

again consider a Rayleigh dissipation function of the form F � β|v|2{2. The Euler-

Lagrange equations are:

:r � :z̄ cos θ � pL� rq 9θ2 � g cos θ � kr

m
� g � β

m
9r � β 9z̄

m
cos θ , (3.3a)

:θ � � g � :z̄

L� r
sin θ � 2

L� r
9r 9θ � β

m
9θ � β 9z̄

mpL� rq sin θ . (3.3b)

In Fig. 3.2 we plot the largest Lyapunov exponent of the spring pendulum system

versus the amplitude of the vertical forcing. We note that, for smaller values of k

such as k � 250 or k � 500, the Lyapunov exponent evolution is shifted to the right

when compared to Fig. 2.4 and shows sharp drops, while for k Ñ 8 the evolution

matches very well that of Fig. 2.4. The largest Lyapunov exponent of the classic

pendulum is plotted on the same graph and shows that this system has some higher

values of the Lyapunov exponent for certain amplitudes A when compared to the

18



Rigid
k=250
k=500

k=1000
k=2000

A

σ
m

a
x

14121086420

0.25

0.2

0.15

0.1

0.05

0

-0.05

-0.1

x

ẋ
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Figure 3.2: This figure for the forced damped spring pendulum shows (a) The
progression of the largest Lyapunov exponent for amplitude A ranging from 0 to 15
at different spring constants k (using the Wolf method) and (b) A phase plane of x
vs. 9x at stable forcing amplitude A � 4. Parameter values used are L̃ � 5, g � 9.8,

ω � 0.9
b
g{L̃, β � 0.01 and k � 1000.

spring pendulum. Moreover, the ranges of chaotic behavior are slightly larger for

the classic pendulum. However, Fig. 3.2 shows an overall very good match between

the Lyapunov exponents of the classic and spring pendulums, which verifies our

expectation that the Lyapunov exponent evolution of the two modeling methods

should be similar. Fig. 3.2 also shows a phase plane for A � 4 that yields stable,

periodic behavior as in the case of the forced damped pendulum in Fig. 2.2, in spite

of the slightly different shape of the orbit.
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3.2 Perturbation analysis of unforced case

We can explore the comparison of the spring pendulum to the classic pendulum

more carefully by doing a perturbation analysis of the spring pendulum system. The

analysis will be performed on the unforced case (z̄ � 0) of the spring pendulum,

which yields the system of equations:

:r � pL� rq 9θ2 � g cos θ � k

m

�
r � mg

k

	
� β

m
9r (3.4a)

:θ � �g sin θ

L� r
� 2 9r 9θ

L� r
� β

m
9θ (3.4b)

θp0q � θ0
9θp0q � 0 rp0q � 0 9rp0q � 0 . (3.4c)

We note that in this section we consider the total stretching of the spring (r Ñ
r � mg

k
), as opposed to considering it relative to the extension due to gravity at

rest (mg
k

). We will consider the case of small amplitude oscillations and define our

asymptotic parameter as the initial angular position, 0   pε � θp0qq ! 1. We write

the expansions

θ � εθ1ptq � ε2θ2ptq � ... , r � r0 � δr1ptq � δ2r2ptq � ... , (3.5)

where 0   δ ! 1 is another small parameter whose relation to ε will be determined.

We seek a distinguished limit in order to determine this relationship between δ

and ε. It should be mentioned that, in the absence of a distinguished limit, the

derived equations of motion will not show the full r� θ coupling and will give a less

accurate prediction of the dynamics.

We now expand equation (3.4a) to the next order and proceed with equation

(3.4b) in order to find the behavior in terms of r1 and θ1:
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ε:θ1 � � g

L� δr1

sin εθ1 � 2δ 9r1ε 9θ1

L� δr1

� β

m
ε 9θ1 . (3.6)

By using that sinpεθ1q � εθ1, δr1 ! 1 and setting the ε1 order terms equal, it

follows that the equation of motion for θ1 is:

:θ1 � � g
L
θ1 � β

m
9θ1 . (3.7)

Similarly from (3.4a), we obtain:

δ :r1 � pL� δr1q ε2 9θ2
1 � g

�
1� ε2θ2

1

2



� k

m

�
δr1 � mg

k

	
� β

m
δ 9r1 ,

where we used the first two terms in the Taylor expansion of cospεθ1q � 1� ε2θ21
2
. This

further reduces to

δ :r1 � δ

�
ε2r1

9θ1

2 � k

m
r1 � β

m
9r1



� gε2θ2

1

2
� ε2L 9θ1

2
.

The term which has a factor of ε2 inside the first parentheses can be ignored since it

is much smaller than the others. Thus we obtain:

δ :r1 � δ

�
� k

m
r1 � β

m
9r1



� gε2θ2

1

2
� ε2L 9θ1

2
.

An appropriate choice of a relation between δ and ε is therefore δ � ε2. Equating

all Opε2q terms gives us the equation of motion for r1:

:r1 � � k

m
r1 � β

m
9r1 � gθ2

1

2
� L 9θ2

1 . (3.8)

A simulation which solves equations (3.7) and (3.8) is showed in figure 3.3 for r and

θ. We note that the behavior coming from the perturbation analysis agrees very well
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Figure 3.3: Comparison of the behavior given by the numerical simulation (points)
and perturbation analysis (curves) for rptq and θptq respectively. Parameter values
used are L̃ � 5, k � 1000, β � 20, m � 1 and ε � 0.2.

with the one generated by the original spring pendulum simulation, as shown in Fig.

3.3.

It is worth mentioning that the system of equations (3.7) and (3.8) is nonlinear,

but can in fact be solved analytically, which provides a good check for the numerical

simulation based on these equations.

3.3 Perturbation analysis of forced case

For the case of a non-trivial forcing z̄, we again consider the case of small ampli-

tude oscillations and define our asymptotic parameter as the initial angular position,
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θp0q � ε ! 1. We write the expansions

θ � εθ1ptq � ε2θ2ptq � ... , r � r0ptq � εr1ptq � ε2r2ptq � ε3r3ptq � ... . (3.9)

It is useful to switch to looking at the stretching of the spring relative to the

amount of gravity that occurs when the pendulum is hanging down with no forcing

(mg
k

). Thus, in this section the problem can be written in the form of equations (3.3),

which we are rewriting here for reference.

:r � :z̄ cos θ � pL� rq 9θ2 � g cos θ � k

m

�
r � mg

k

	
� β

m
9r � β 9z̄

m
cos θ ,

:θ � � g � :z̄

L� r
sin θ � 2

L� r
9r 9θ � β

m
9θ � β 9z̄

mpL� rq sin θ .

We use the above expansions in equation (3.10a) and since for ε Ñ 0, cos θ �
1� ε2θ21

2
, the Op1q terms yield the equation for r0:

:r0 � β

m
9r0 � k

m
r0 � :z̄ � β

m
9z̄ . (3.11)

Equation (3.11) can be solved for our choice of external forcing given in (2.8).

With initial conditions rp0q � 0, 9rp0q � 0, the solution of equation (3.11) is:

r0ptq � �α1e
� β

2m
t cosp∆tq � α2ω � α1β{p2mq

∆
e�

β
2m

t sinp∆tq � α1 cosωt� α2 sinωt ,

(3.12)

where α1 � Aω2 pωmq2�km�β2

pβωq2�pk�ωmq2
, α2 � � pβAωk

pβωq2�pk�ωmq2
and ∆ �

?
β2�4mk

2m
.

We can see that equation (3.11) describes a damped, non-resonant linear oscil-

lator. This means that, for large spring constant k, r0 will be following the forcing
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given by z̄ and coming from the last two terms of equation (3.12) (the particular

solution).

3.4 The case of large spring constant k

Now we consider equations (3.3) in the limit of a very large spring constant k � 1
ε
,

εÑ 0 and small length perturbations r � εr̃. In (3.3a), this yields:

ε:r̃ � :z̄ cos θ � pL� εr̃q 9θ2 � g cos θ � g � r̃

m
� β

m
εr̃ � β

m
9z̄ cos θ

Using the expansion r̃ � r̃0ptq � εr̃1ptq � ε2r̃2ptq � ..., the Op1q terms give the

following equation for r̃0:

r̃0 � mgpcos θ � 1q �m:z̄ cos θ �mL 9θ2 � β 9z̄ cos θ . (3.13)

If we assume that 9θ is bounded (and thus 9θ2 is bounded), then the equation for r̃0 is

also bounded. The same limits in (3.3b) give the equation:

:θ � � g � :z̄

L� εr̃
sin θ � 2

L� εr̃
ε 9r̃ 9θ � β

m
9θ � β 9z̄

mpL� εr̃q sin θ . (3.14)

Taking equation (3.14) in the limit ε Ñ 0, we note that the term L � εr̃ in the

denominator becomes L and the second term on the right hand side is Opεq and thus

can be ignored to leading order. Therefore we conclude that in the limit k Ñ 8 and

r � εr̃ equations (3.3) are reduced to the equation for the forced damped pendulum

(2.7).

The spring pendulum approach for modeling the rigid pendulum is thus appro-

priate for large spring constants k.
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3.5 Spring pendulum with piecewise constant stiffness

So far we have considered a spring pendulum with a large spring constant so that it

behaves similarly to the classic pendulum resisting stretching and compression. In

switching to the string pendulum that can become slack under a vertical forcing z̄ptq,
the model of the spring pendulum needs to be adapted to model such slack states.

We thus consider the spring pendulum with piecewise constant stiffness, charac-

terized by different spring constants k1 and k2 depending on whether the spring is

extending or compressing relative to the fixed, original length of the string [6]. If

k1 is the constant associated with extension r ¡ 0, this parameter should maintain

a high value to prevent the pendulum from extending beyond its length L. If k2

corresponds to compression r   0, than this value should be relatively small to allow

for some flexibility and low resistance to compression. Numerical simulation of the

equations of motion suggested that k1 � 1000 and k2 � 0.01 are sufficiently high and

respectively low values for these constants.

The equations of motion will be analogous to equations (3.3a) and (3.3b), but will

include a condition that checks whether the pendulum is compressed or extended.

This is controlled by the variable r:

κprq �
#
k1 if r ¥ 0 ,

k2 if r   0 .
(3.15a)

:r � :z̄ cos θ � pL� rq 9θ2 � g cos θ � κprqr
m

� g � β

m
9r � β 9z̄

m
cos θ . (3.15b)

The equation of motion for θ is unchanged from equation (3.3b).

Fig. 3.4 provides a comparison of the spring pendulum with piecewise constant

stiffness with the simple spring pendulum analyzed earlier in this section, as well as
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Figure 3.4: For small angle oscillations, this shows a good match of the time
profiles for the motion of the spring pendulum with piecewise constant stiffness, the
simple spring pendulum and the rigid pendulum. Parameter values used are A � 0,
L � 5, g � 9.8, β � 0.5, k1 � 1000, k2 � 0.01 (for piecewise constant stiffnesses) and
k � 1000 (for the simple spring pendulum).

the rigid pendulum in Chapter 2.2. We consider the unforced case with z̄ptq � 0

and note that the motions in the x direction match almost indistinguishably for

small angle oscillations, while the z behaviors differ. We choose to compare the x, z

directions as opposed to the r, θ ones because the DAE approach in section 4 also

uses Cartesian coordinates. We note that the slow, damped oscillations in the z

direction for the spring pendulum are due to the large value of the spring constant k,

while the faster oscillations for the spring pendulum with piecewise constant stiffness

are due to the large k2 and very small k1, which allows the string to have a lower

resistance to compression.
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Figure 3.5: The dependence of the largest Lyapunov exponent for the spring pen-
dulum with piecewise constant stiffness on amplitude A ranging from 0 to 15 (using
Wolf’s method). Parameter values used are ω � 0.9

a
g{L, L̃ � 5 � r0, g � 9.8,

damping β � 0.1 and k1 � 1000, k2 � 0.01.

A Lyapunov exponent dependence on a range of amplitudes for the spring pen-

dulum with piecewise constant stiffness is showed in Fig. 3.5. Since this corresponds

to the largest Lyapunov exponents for a string pendulum, it cannot be compared

with Fig. 2.4 and 3.2(a), which are formulations of the classic pendulum. We note

that numerical problems can occur because of the expression of the problem in polar

coordinates and due to the denominators L � r in equation (3.3b). A comparison

with Fig. ??a) shows similar chaotic behavior in the range A � 10-12 and stable

solutions for small amplitudes. However, Fig. 3.5 has another range of chaotic be-

haviors centered at amplitude A � 6. This difference might arise due to the slack

behavior modeled for the spring pendulum with piecewise stiffness using the small

coefficient of compression k2.

The work in this section suggests that the string pendulum can be approximated

with the model of a spring pendulum with piecewise constant stiffness, which allows

for the string of the pendulum to become slack under some exterior forcing ampli-

tudes. An analysis of the accuracy of this approximation is provided in Chapter

6. A comparison with the modeling method of the string pendulum introduced in
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Chapter 4 will help identify the advantages and disadvantages of considering a spring

pendulum with piecewise constant stiffness.
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4

DAE re-formulation of the classic pendulum

In this Chapter, we formulate the classic pendulum system described by equation

(2.7) using a differential-algebraic equation system (DAE), which is a system of

ODE’s to which we can apply the Euler-Lagrange method. In this case, the La-

grangian will include an extra term based on a geometric constraint with a Lagrange

multiplier. The formulation given in Chapter 2.2 is the natural way of modeling

the rigid pendulum, however it leads to numerical problems when adjusted for the

pendulum that can go through slack states. In Chapter 5, this DAE method will be

extended to consider the case of a flexible pendulum string.

Since we want to work in the stationary reference frame (and thus keep track of

the vertical motion z � z̄, which will prove useful when switching from taut to slack

states), we will be working with x, z coordinates as opposed to the polar coordinates

we used so far. In our case, the geometric condition is a rheonomic constraint [4]

coming form the fact that the pendulum string is inextensible and thus restricts the

motion of the mass:

fpλq � xpt, λq2 � pzpt, λq � z̄ptqq2 � L2 , (4.1)
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and we require that fpλq � 0. The Lagrange multiplier λptq may be interpreted as

being related to the tension force in the string.

The Lagrangian L � Lpx, z, λq � Lpuq becomes

L � T � U � 1

2
mp 9x2 � 9z2q �mgz � λpx2 � pz � z̄q2 � L2q .

From the Euler-Lagrange equation (2.5) with respect to each variable in u �
px, z, λq and the Rayleigh dissipation function, which is again taken to be of the

form F � β
2
p 9x2 � 9z2q, we can deduce

:x � �2λx

m
� β 9x , (4.2a)

:z � �g � 2λpz � z̄q
m

� β 9z , (4.2b)

0 � x2 � pz � z̄q2 � L2 . (4.2c)

In order to solve this system, at each time step in a numerical simulation we need

to determine λ so that (4.2c) is satisfied. We do this by evolving equations (4.2a)

and (4.2b) and checking if condition (4.2c) is satisfied. If it is not, we adjust λ and

redo the evolution of x and z. We adjust λ using Newton’s method to converge to

the λptq value for each time step:

λk�1 � λk � fpλkq
f 1pλkq , (4.3)

with f given by (4.1).

A method of computing the denominator in the above equation that is numerically

more efficient is to differentiate the expression for f in terms of x and z as a function

of λ. Thus, starting with fpλq � xpλq2 � pzpλq � z̄q2 � L2, we obtain f 1pλq �
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2x Bx
Bλ
� 2pz� z̄q Bz

Bλ
. We will call the derivatives of x and z with respect to λ as η and

ξ, then it follows that f 1pλq � 2xη � 2pz � z̄qξ.
Therefore, we have two extra ODE’s coming from taking derivatives with re-

spect to λ of the original equations (4.2a), (4.2b). The system under consideration

becomes:

:x � �2λx

m
� β 9x , (4.4a)

:z � �g � 2λpz � z̄q
m

� β 9z , (4.4b)

:η � � 2

m
x� 2λ

m
η � β 9η , (4.4c)

:ξ � � 2

m
pz � z̄q � 2λ

m
ξ � β 9ξ , (4.4d)

0 � x2 � pz � z̄q2 � L2 . (4.4e)

The initial conditions for x and z are unchanged, and η � 9η � 0 and ξ � 9ξ � 0

since we will compute λ independently on each time step.

Thus there is no ODE for the λ variable, but the value from the algorithm above

is determined indirectly from x and z so that they satisfy (4.4e). Then once λ is

known, equations (4.4a) and (4.4b) determine the evolution of xptq and zptq.
The simulation based on the DAE system and Newton’s method implies using

equation (4.3) for a number of iterations for each time step. Six iterations suffice for

convergence of Newton’s method in this case, and the numerical scheme is first order

accurate. Since the Runge-Kutta integration is called in each call of function f , the

integration is performed several times for each time step. This is more complicated

and takes more time than the simulation for the spring pendulum model, which

involves using a simple Runge-Kutta integration applied to equations (3.3a) and

(3.3b). However, the method presented in this section describes the string pendulum
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system by definition and avoids the oscillations around the trajectories obtained in

the spring pendulum model.

We note that the simulation described in Chapter 3 matches the simulation gen-

erated using the DAE formulation well. Moreover, Fig. 4.1 shows an evolution of

the largest Lyapunov exponent of the system for a range of A’s that matches closely

the one for the classic and spring pendulums, see Fig. 2.4 and 3.2. The excellent

agreement with Fig. 2.4 was expected since both the DAE formulation and the one

in Chapter 2.2 describe the same physical system of a classical pendulum with non-

stretchable and non-compressible string. This agreement over the whole parameter

range shows that the method of determining the largest Lyapunov exponent of a

system described by equation (2.11) at the end of Chapter 2.4 and used for the DAE

formulation matches the methods in [17] and [2] used for the classic and spring pen-

dulum systems. The differences in the number and amplitude of spikes to 0 in the

two Lyapunov exponent plots should be noted and are due to the different numerical

approaches used in computing the exponents. While [17] and [2] use the linearized

equations for the nearby trajectory u1 and give all the Lyapunov exponents of the

system, the method applied to the DAE system uses only two nearby trajectories on

the full system and only determines the largest Lyapunov exponent σmax.

We will now use this DAE formulation to set up the taut-slack problem for the

string pendulum in the next chapter.
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Figure 4.1: Dependence of the largest Lyapunov exponent for the forced damped
pendulum modeled using the DAE formulation on amplitude A ranging from 0 to 15
(using limit definition for σmax method). Parameter values used are L � 5, g � 9.8,
ω � 0.9

a
g{L, β � 0.01.
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5

The taut-slack pendulum

In this Chapter, we consider the possibility of the pendulum string becoming slack,

i.e. x2�pz� z̄q2   L2q, in order to analyze the dynamics of the string pendulum. In

Chapter 4 we proposed a re-formulation of the rigid pendulum problem with external

forcing. We now explore how the behavior of the system changes when switching

from a rigid rod of length L to a massless string of length L. The simulation of the

slack pendulum will cause some challenges since it will need to take into account the

fact that the pendulum string cannot stretch to a length bigger than L.

Some of these challenges include the limitations of the DAE formulation described

in section 4. The DAE setup assumes that the problem’s initial conditions satisfy

the taut pendulum state, so any variation from this initial assumption can lead to

unreasonable evolutions of the trajectories. For instance, if the pendulum string is

slack or stretched out at the start of the simulation, there are no changes in the x

direction however the z direction does not obey the taut pendulum state. In the case

of starting in the taut pendulum state, but with velocities in the x and z directions

creating a positive outward normal velocity, the DAE simulation trajectories match

the evolution from the taut initial conditions.
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Figure 5.1: This figure shows (a) A schematic diagram of the string pendulum in
both the taut and slack states and (b) A string pendulum under external forcing
with no horizontal motion

We start by considering the string pendulum in 2D with point of attachment

moving with a vertical motion z̄ptq as showed in Fig. 5.1(a). We note how the

pendulum mass can be fully extended and constrained by the string length, but

given enough velocity it can jump and follow a parabolic path until the string is

extended again [5]. We will consider z̄ to be a sinusoidal motion of the form of

equation (2.8).

We need to differentiate between two situations, called the slack and taut states.

When the pendulum is slack, x2 � pz � z̄q2   L2, where L is the length of the
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pendulum, we would have the equations of motion:

:x � � β

m
9x , :z � �g � β

m
9z , (5.1)

since the mass of the pendulum would just be in free fall and thus only affected by

gravity and damping due to air resistance. We note that the above equations with

the change of variables x � pL� rq sin θ , z � z̄ � pL� rq cos θ yield equations (3.3)

with the exception of the spring restoring force in the term � k
m

�
rptq � mg

k

�
. This

shows that the spring pendulum and taut-slack formulations are consistent.

The taut case will be in turn characterized by equations (4.4) and our main focus

now is on switching between these dynamical states.

5.1 Switching conditions in absence of horizontal motion

A simulation using equations (4.4) for the taut case and equations (5.1) for the slack

case fails to take into account the fact that the pendulum string cannot stretch for

a length greater than L. In order to solve this problem, we first reduce it to an

easier one, a one-dimensional problem for a particle that can only move in the z

direction. There is no forcing in the x direction, and if xp0q � 0 then xptq � 0 for

any t. We thus reduce the problem to the 1D case. The Lagrangian in this case is

L � T � U � 1
2
m 9z2 �mgz.

To gain insight into the solution to this problem, we identify the similarity be-

tween this situation and the one of the ball positioned on a sinusoidally-vibrating

table, which also exhibits a switching behavior [3], see Fig. 5.1(b). Using the insight

gained from this situation, the acceleration equation is

:z �
#

:z̄ � β 9z if z ¤ z̄ � L and p 9z � 9z̄qpz � z̄q ¡ 0,

�g � β 9z else.
(5.2)
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We note that we should also take into account the fact that our Euler-Lagrange

approach might be affected by the “corner conditions” imposed at times when the

mass of the pendulum is going from slack to fully stretched and vice versa [11].

Based on the analogy between impacts of the ball bouncing off table and pendulum

mass being constrained by a string, we write a corner condition relating the velocity

immediately before and after impact (at time t�). We use c to denote the coefficient

of restitution and thus c � 1 for an elastic rebound (stretchy string), 0   c   1 for a

partially inelastic rebound and c � 0 for a completely inelastic impact (unstretchable

string). The corner condition is given in the moving reference frame by:

9zpt�� q � �c 9zpt�� q , (5.3)

so that in the stationary reference frame we obtain 9zpt�� q � 9z̄ � c 9zpt�� q.

5.2 Switching conditions for general motion

Now we are left with finding corner conditions for the case of the 2D pendulum.

Our physical understanding of the system indicates that, in order for the no-stretch

condition to be satisfied, we would need to check the velocity in the normal direction

of the pendulum when it reaches a taut position. If the normal component of the

velocity is greater than zero, than it needs to be zeroed in the code so that the

simulation does not allow the string to go over its maximum length of L: x2 � pz �
z̄q2 � L2. A similar idea is introduced in [5], where the radial component of the

velocity of the mass is zeroed when the string becomes taut in the case of a toy

jumping pendulum.

The normal vector to the trajectory of the pendulum when it makes an angle θ

with the vertical is n � pcos θ, sin θq, while the vector tangent to this trajectory is

t � psin θ,� cos θq.

37



We will denote by v� the velocity of the string before reaching the taut position

and by v� the velocity right after this position. We will therefore have an equation

of v� in terms of v�n and v�t and an equation relating v� to v�n and v�t . We will

try to find the values of the latter two velocities that correspond to out physical

understanding of the system as described above. We also denote the norm of these

vectors by: v�n � ||v�n || and v�t � ||v�t ||. We will consider the system in the moving

reference frame in the following derivation.

We start with v� � v�nn� v�t t � p 9x, 9zq. We can thus find v�n and v�t by finding

the projection of v� on the normal and tangential directions:

v�n � p 9x cos θ � 9z sin θqpcos θ, sin θq , v�t � p 9x sin θ � 9z cos θqpsin θ,� cos θq .

Similarly, one can obtain equations for the states following the taut position:

v�n � p 9x� cos θ � 9z� sin θqpcos θ, sin θq , v�t � p 9x� sin θ � 9z� cos θqpsin θ,� cos θq .

The relation between the two states is summarized as

v�n � �cv�n , v�t � v�t , (5.4)

for c representing the coefficient of restitution.

We solve the system of equations (5.4) and obtain:

9x� � 9xpsin2 θ � c cos2 θq � 9zp� sin θ cos θ � c sin θ cos θq ,

and

9z� � 9xp�c sin θ cos θ � sin θ cos θq � 9zpcos2 θ � c sin2 θq .

Using that sin θ � z�z̄
L

and cos θ � x
L

, as well as the assumption of inelastic

collision c � 0, we can find the values for the velocities in the x and z directions:
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9x� � 9x
pz � z̄q2
L2

� p 9z � 9z̄qxpz � z̄q
L2

, 9z� � 9z̄ � 9x
xpz � z̄q
L2

� p 9z � 9z̄qx
2

L2
. (5.5)

We can therefore summarize the switching between the taut and slack states of

the string pendulum as follows:

1. If the string is taut (x2 � pz � z̄q2 � L2) and stretching out (x 9x �
pz � z̄qp 9z � 9z̄q ¡ 0), then:

(a) If the string was previously slack, apply equations (5.5) to
determine the updated velocities and then use equations of
motion (4.4).

(b) If the string was previously taut, use equations of motion (4.4).

2. If the string is slack, then use equations of motion for free fall (5.1).

This algorithm will be used in the next chapter in order to perform numerical

simulations of the taut-slack system and compare its behavior with that of the spring

pendulum with piecewise constant stiffness formulation.
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6

Comparison of the DAE and spring models of the
taut/slack pendulum

In this Chapter, we compare the approximation given by the spring pendulum with

piecewise constants stiffness against the model of a string pendulum that switches

between the taut and slack positions using the conditions identified in Chapter 5.2.

The spring pendulum formulation of the string pendulum system is described by

equations (3.3b) and (3.15) in Chapter 3.5.

First, we note the x and z trajectories of motion for the taut-slack formulation

in Fig. 6.3, which also indicates the times when the string pendulum is taut (green

line above trajectory) and slack (green line below trajectory). For an amplitude of

A � 10, the string pendulum thus goes through consecutive taut and slack states.

In order to compare these two models of the string pendulum, we first consider

the case of no forcing (A � 0). The two approximations seem to match very well

for the unforced case, as we can see from the evolution of the x and z trajectories in

figure 6.1. Similarly, figure 6.2 shows the phase plane of the system (z vs. 9z). The

phase plane corresponding to the spring pendulum model seems to wrap around the
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Figure 6.1: Comparison of time profiles for the motion in the x (left) and z (right)
coordinates for the string pendulum modeled using the spring pendulum with piece-
wise constant stiffness and the taut-slack formulation. Parameter values used are
A � 0, L � 5, g � 9.8, damping β � 0.5.
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ż

-4.88-4.9-4.92-4.94-4.96-4.98-5-5.02

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

Figure 6.2: Phase plane (z vs. 9z) for the spring pendulum with piecewise constant
stiffness and the taut-slack formulation (same parameter values, A � 0)

one determined using the DAE model, which is explained by the fact that the spring

pendulum is allowed to compress and stretch out.

We can observe the effects of increasing the forcing amplitude A in Fig. 6.4.

We note that the x and z trajectories of the two models agree with the increase

of amplitude, although the x time profiles are not in perfect agreement. The spring

pendulum with piecewise constant stiffness provides a good, simple approximation of

the forced string pendulum, but diverges slightly from the DAE model as the forcing

amplitude increases. On the other hand, the DAE model behaves as expected but
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Figure 6.3: The time profiles in the x (left) and z (right) coordinates for the forced
string pendulum modeled using the taut-slack formulation. Parameter values used
are A � 10, ω � 0.9

a
g{L, L � 5, g � 9.8, damping β � 0.5.
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Figure 6.4: Time profiles in the x (left) and z (right) coordinates for the forced
string pendulum modeled using the spring pendulum with piecewise constant stiffness
and the DAE model. Parameter values used are A � 2.5, ω � 0.9

a
g{L, L � 5,

g � 9.8, damping β � 0.5.

requires a more complex algorithm and switching between two sets of equations of

motion. The phase plane z vs. 9z for the same amplitude A � 2.5 is showed in Fig.

6.5, and we note the very good agreement between the planes and the stable periodic

cycle of the behavior after the early transients have passed. This is an example of

an amplitude value for which the solution converges to a steady solution.

We can also note that the two methods used in modeling the string pendulum are

similar in the stability of the solutions. Fig. 3.5 in Chapter 3 shows a dependence

of the largest Lyapunov exponent for the spring pendulum with piecewise constant
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Figure 6.5: Phase plane (z vs. 9z) for the spring pendulum with piecewise constant
stiffness and the taut-slack formulation (same parameter values, A � 2.5)
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(b) Amplitude A � 15

Figure 6.6: Phase planes x vs. 9x for the motion for the taut-slack string pendulum.
Parameter values used are ω � 0.9

a
g{L, L � 5, g � 9.8, damping β � 0.5.

stiffness on a range of amplitudes. Such a plot is difficult to produce for the case of

the DAE modeling method, because of the resetting of velocities at times when the

string pendulum might go from a slack to a taut case.

However, we can still observe the dynamics generated by this method through

phase planes at different amplitudes. Fig. 6.6 shows the phase planes in the x

component for the taut-slack formulation when amplitude A � 10 and A � 15,

respectively. The first phase plane is an inward spiral because the oscillations in

the x direction keep getting smaller even after earlier transients are gone, while
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Figure 6.7: Phase plane (x vs. 9x) for the taut-slack string pendulum. Parameter
values used are A � 11.0, ω � 0.9

a
g{L, L � 5, g � 9.8, damping β � 0.5.

the second is a periodic cycle, which matches our expectations from the Lyapunov

exponents corresponding to these values in Fig. 3.5. These are cases in which the

solutions approach steady solutions in the moving reference frame (with xptq � 0

and zptq � z̄ptq). We note that for both of these amplitudes the string pendulum

goes through both taut and slack states. An example of a chaotic solution for the

taut-slack formulation of the string pendulum is given in figure 6.7 for amplitude

A � 11.
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7

Conclusions and further work

We have modeled the classic pendulum using both a spring pendulum and a dif-

ferential algebraic system (DAE) approach. The string pendulum, which is not as

well understood as the classic pendulum, was approximated using a spring pendulum

with piecewise constant stiffness and a DAE system with switching between the taut

and slack cases. These modeling methods proved to match very well, as proven by

the time profiles and phase planes of the trajectories. Moreover, the dependence of

the largest Lyapunov exponent of the system on parameter A denoting amplitude

of the forcing shows that the stability behavior and dynamics of the approximations

are also similar.

More work can be done in determining the Lyapunov exponents of the DAE

formulation for the string pendulum. This would allow a complete comparison of

this method with the spring with piecewise constant stiffness. An analysis of the

stability of equations (A.12) would also be of interest in order to be able to describe

the 3-dimensional system.

A more thorough study of the formulations’ dependence on parameters would

include holding forcing amplitude A fixed and changing the forcing frequency ω,
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which could be used to study resonant responses. We note that the values of the

length L and amplitude A considered here may be relevant for applications such as

moored boats, but the dynamics for other motivations should be investigated for

smaller values of these parameters. Another possibility for future work is looking

for multiple stable states by starting from different initial conditions at the same

system parameters. Alternatively, the the system’s behavior could be numerically

simulated using continuation for a finite range of amplitudes A; decreasing A back to

its starting value would allow to check if hysteresis occurs, in the case where multiple

solutions are obtained.

Leading to an analysis of Newton’s cradle, a future step in this research will be

considering a string pendulum suspended by two cables attached to a frame which is

given an exterior forcing. This is the case of having one ball in the Newton’s cradle

setup in Fig. 1.1c). The system can be expected to have erratic behavior, given that

the strings go alternatively through taut and slack states [16]. The box at the end

of Chapter 5 would need to be updated to take into account each string’s motion;

the equations for both the taut and slack states would have different forms due to

the spatial constraint of the second string to which the mass is attached.

If, as in Newton’s cradle, multiple balls are considered, then a 3-dimensional

version of the equation of motion will be needed. The system would be further

complicated by impacts between masses, which would be checked by comparing the

x, y, z positions of the masses. If the distance between them is very close to 0,

collision occurs and the velocities of the masses would need to be updated using a

coefficient of restitution close to 1, such that most of the kinetic energy is conserved

(elastic collision).
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Appendix A

Preliminary study of the taut-slack 3D pendulum

The analysis in Chapter 5 can be generalized for the 3D pendulum that can be moved

by an external forcing in any of the three directions. In the case of a slack string, we

will have the similar equations of motion

:x � 0 :y � 0 :z � �g . (A.1)

In the taut case we will begin, as before, with the Lagrangian of the system,

L � T � U � λf , which equals:

L � 1

2
mp 9x2 � 9y2 � 9z2q �mgz � λpx2 � y2 � z2 � L2q . (A.2)

The Euler equations with respect to xptq, yptq and zptq become the equations of

motion of the system in the taut case:

:x � �2
λ

m
x� β 9x , (A.3a)
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:y � �2
λ

m
y � β 9y , (A.3b)

:z � �g � 2
λ

m
z � β 9z . (A.3c)

We note that our choice of spherical coordinates ensures that we will not have a

singularity in the rest state when the pendulum is hanging straight down:

xptq � L cos θ , yptq � L sin θ sinφ , zptq � L sin θ cosφ . (A.4)

We will use these to eliminate λ and thus determine the equations of motion in

terms of known quantities.

By using equations (A.3a) and (A.4) we find that

:x � �L
�

2
λ

m
cos θ � b 9θ sin θ



.

We therefore obtain a first formula for λ:

λ � m

2
p:θ tan θ � 9θ2 � b 9θ tan θq . (A.5)

Now we go on to expressing :y from (A.4) and respectively, (A.3b):

:y � �2
λ

m
L sin θ sinφ� bLp 9θ cos θ sin θ � 9φ sin θ cosφq .

We get a second formula for λ:

λ � m

2
p�:θ cot θ � :φ cotφ� 9θ2 � 9φ2 � 2 9θ 9φ cot θ cotφ� b 9θ cot θ � b 9φ cotφq . (A.6)

48



Finally, from (A.4) and (A.3c) we obtain:

:z � �g � 2
λ

m
L sin θ cosφ� bLp 9θ cos θ cosφ� 9φ sin θ sinφq ,

which implies

λ � m

2

�
�:θ cot θ � :φ tanφ� 9θ2 � 9φ2 � 2 9θ 9φ cot θ tanφ� b 9θ cot θ � b 9φ tanφ� g

L sin θ cosφ



.

(A.7)

If we set equal the expressions for λ in (A.6) and (A.7), further calculations give

us the first angular equation of motion:

:φ � �2 9θ 9φ cot θ � b 9φ�
�
g

L
� :ȳ

L



� sinφ

sin θ
. (A.8)

Similarly, by combining equations (A.6) and (A.5), we can find the second equa-

tion of motion:

:θ � � g
L

cos θ cosφ� 9φ2 sin θ cos θ � b 9θ . (A.9)

Using either expression of λ and the above equations, we can compute:

λ � m

2

�
� g
L

sin θ cosφ� 9φ2 sin2 θ � 9θ2
	
. (A.10)

The coordinate changes in (A.4) help us express θ and φ as

θ � arccos
x

L

and

φ � arctan
y

z
.

Using these changes, λ becomes

λ � m

2

�
�gz
L2

� p 9yz � y 9zq2
L2py2 � z2q �

9x2

L2 � z2



, (A.11)
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and we can finally express the equations of motion in :x, :y and :z of the 3D pendulum:

:x � gxz

L2
� xp 9zx� z 9xq2
L2py2 � z2q �

x 9x2

L2 � x2
� b 9x ,

:y � gyz

L2
� yp 9yz � y 9zq2
L2py2 � z2q �

y 9x2

L2 � x2
� b 9y , (A.12)

:z � �g � gz2

L2
� zpz 9y � y 9zq2
L2py2 � z2q �

z 9x2

L2 � x2
� b 9z .

We note that these equations can be checked using a different approach of the

Euler-Lagrange method. This approach involves using the Lagrangian as L � m
2
p 9x2�

9y2 � 9z2q �mgz and Rayleigh’s dissipation function for frictional losses:

F � b

2
p 9x2 � 9y2 � 9z2q .

Using the same spherical coordinates (A.4) and the extended Euler-Lagrange equa-

tions:

�BLBθ �
d

dt

�BL
B 9θ



� BF
B 9θ

� 0 ,

and

�BLBφ � d

dt

�BL
B 9φ



� BF
B 9φ

� 0 ,

the same equations of motion are derived.

A similar derivation for equations equivalent to (A.12) for the 2-dimensional case

can be performed by considering only the x and z components in equations (A.3)

and (A.4). Elimination of λ yields the equations of motion in :x and :z, however

implementation of these equations proved to have stability problems. Therefore,
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equations (A.12) could have the same issues and would be an interesting aspect to

further analyze.

A.1 Switching conditions for the 3D pendulum

As before, equations (A.12) fail to take into account the fact that the string cannot be

stretched beyond its maximum length L. Thus, we need to take the same approach

as the one used in Chapter 5 for the 2D pendulum.

We begin by choosing one normal vector to the trajectory of the pendulum, as

well as two suitable tangential directions t1 and t2:

n � px, y, zq,

with norm ||n|| � L .

t1 � px, y, z � L2

z2
q ,

for z � 0 and with norm ||t1|| �
b

L4

z2
� L2 and

t2 � n� t1 � p�y
z
L2,

x

z
L2, 0q,

with norm ||t2|| � L2

b
x2�y2

z2
.

We begin with the velocity vector just before the taut position:

v� � p 9x, 9y, 9zq � v�nn� v�t1t1 � v�t2t2 ,

and thus we can derive v�n , v�t1 and v�t2 by finding the projections of v� on the

normal and tangential directions:

v�n �
v� � n
||n||2 n � x 9x� y 9y � z 9z

L2
n , (A.13a)
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v�t1 �
v� � t1

||t1||2
t1 �

x 9x� y 9y �
�
z � L2

z

	
9z

L2

�
L2

z2
� 1



t1 , (A.13b)

v�t2 �
v� � t2

||t2||2
t2 � �yz 9x� xz 9y

L2px2 � y2q t2 . (A.13c)

Since v� � p 9x�, 9y�, 9z�q � v�nn � v�t1t1 � v�t2t2 . we would obtain equations iden-

tically similar to equations (A.13) for the components of the velocity right after the

taut position. Our physical understanding of the system dictates that the following

changes need to be incorporated in the simulation if the velocity at the taut position

is positive:

v�n � 0 v�t1 � v�t1 v�t2 � v�t2 . (A.14)

This implies the following system of equations:

x 9x� � y 9y� � z 9z� � 0 , (A.15a)

x 9x� � y 9y� �
�
z � L2

z2



9z� � x 9z � y 9y �

�
z � L2

z2



9z , (A.15b)

�y 9x� � x 9y� � �y 9x� x 9y . (A.15c)

This system of equations can be solved for unknowns 9x�, 9y� and 9z� :

9x� � 1

x2 � y2

�
9x

�
x2z2

L2
� y2



� 9y

�
xyz2

L2
� xy



� 9zxzpz2 � L2q

�
,

9y� � 1

x2 � y2

�
9x

�
xyz2

L2
� xy



� 9y

�
y2z2

L2
� x2



� 9zyzpz2 � L2q

�
, (A.16)
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9z� � 1

L2
r� 9xxz � 9yyz � 9zpz2 � L2qs .
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