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Modeling Microtubule-Based Transport and Anchoring of mRNA∗
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Abstract. Localization of messenger RNA (mRNA) at the vegetal cortex plays an important role in the early
development of Xenopus laevis oocytes. While it is known that molecular motors are responsible
for the transport of mRNA cargo along microtubules to the cortex, the mechanisms of localization
remain unclear. We model cargo transport along microtubules using partial differential equations
with spatially dependent rates. A theoretical analysis of reduced versions of our model predicts
effective velocity and diffusion rates for the cargo and shows that randomness of microtubule networks
enhances effective transport. A more complex model using parameters estimated from fluorescence
microscopy data reproduces the time and spatial scales of mRNA localization observed in Xenopus
oocytes, corroborates experimental hypotheses that anchoring may be necessary to achieve complete
localization, and shows that anchoring of mRNA complexes actively transported to the cortex is
most effective in achieving robust accumulation at the cortex.

Key words. intracellular transport, microtubules, anchoring, long-time dynamics, reaction-diffusion model

AMS subject classifications. 35B40, 35K57, 92C15, 92C40

DOI. 10.1137/18M1186083

1. Introduction. The cellular cytoskeleton is key in ensuring the dynamic transport and
localization of many different RNAs, proteins, and vesicles. Polarized networks of microtubule
tracks often provide the basis for directional transport of various intracellular cargoes that
regulate essential processes such as cell division, cell motility, and embryogenesis in various
organisms. In many of these biological processes, the mechanisms underlying the time and
spatial scales of protein and RNA localization are not known, and a better understanding of
the impact of the microtubule geometry on transport processes is required.

One example where the cytoskeleton plays a key role in transport is messenger RNA
(mRNA) localization to the vegetal cortex during oogenesis of the frog Xenopus laevis. The
asymmetric distribution of Vg1 mRNA in the vegetal cytoplasm of the frog oocyte is critical
for correct embryonic patterning in this organism, and similar localization processes occur
in many other biological systems [14, 36]. The molecular motors kinesin and dynein are
responsible for the transport of mRNA cargo along polarized microtubules to the vegetal
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Figure 1. Schematic of mRNA localization in the vegetal cytoplasm of a Xenopus oocyte. mRNA cargoes
(red) are transported by motor proteins (black) along polarized microtubule filaments (blue lines) towards the
vegetal cortex. The vegetal cytoplasm is schematically divided into three regions where transport parameters
have been found to differ [10].

cortex of the Xenopus oocyte [17,37] (see Figure 1). Dynein moves cargo to the minus ends of
microtubules and is hypothesized to contribute to directional transport towards the cortex in
the upper cytoplasm (Regions 1 and 2 in Figure 1), while kinesin moves cargo to the plus ends
of microtubules and may be involved in bidirectional transport in the lower cytoplasm (Region
3 in Figure 1) [17]. Despite these experimental insights, the mechanisms of localization remain
unclear. In particular, experiments suggest that mRNA is anchored at the cortex [1, 41, 56],
but it is not known whether this is necessary for mRNA localization. Our goal is therefore to
take into account the microtubules in modeling the mRNA localization process in Xenopus
oocytes and to provide insights into the mechanisms behind the time and spatial scales of
localization and anchoring in this developmental process.

In our previous work [10] (see also [41]), we used linear transport models coupled with pa-
rameter estimation and analysis to determine diffusion coefficients, motor speeds, and switch-
ing rates for the transitions on and off microtubules for dynamic populations of mRNA in
Xenopus oocytes using FRAP (fluorescence recovery after photobleaching) data [17]. The
analysis there allowed us to suggest differences in transport efficiency of mRNA in different
regions of the oocyte cytoplasm. These constant transition rate models are useful in modeling
dynamics on the short timescale of the FRAP experiments; however, they cannot provide
insights onto the longer timescale of mRNA localization, where the transport directionality
depends on the complex microtubule cytoskeleton. Here we build on the models and pa-
rameter estimates in [10] and incorporate the spatial microtubule networks through spatially
dependent transition rates. We carry out a large-time analysis of reaction-advection-diffusion
transport models on parallel filaments using Fourier expansion and Lyapunov–Schmidt reduc-
tion and extend existing effective transport results [8] to general systems with an arbitrary
number of dynamical states and under no assumptions on the scales of the parameters or on
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the filament density. Our findings and predictions for the dynamics of mRNA in Xenopus can
be summarized as follows:

• An inhomogeneous or random microtubule cytoskeleton leads to a more effective spread
of diffusing cargo than uniformly spaced filaments.
• Anchoring may be necessary to achieve complete localization and to reproduce the

timescales of mRNA localization observed in Xenopus oocytes.
• Anchoring of mRNA actively delivered to the cortex is most effective in achieving

robust localization.
• mRNA anchoring may be enhanced by mRNA already anchored at the cortex.

The models we propose do not explicitly account for the polarity (plus/minus ends) of the mi-
crotubules or for the specific motor species carrying out the transport in each region. Instead,
we assume that this information is embedded in the different kinetic parameters estimated
for each region of the Xenopus oocyte cytoplasm (see Figure 1) in [10]. The models proposed
do, however, account for the geometry and orientation of the microtubule filaments in the
domain, which we henceforth refer to as the microtubule structure.

Previous models for the transport of RNA and proteins along realistic cellular cytoskele-
ton geometries have been proposed to study cell polarization in the mating budding yeast and
neural growth cones [8, 23], as well as mRNA localization in Drosophila oocytes [48]. These
studies use partial differential equations and stochastic models to represent switching between
a diffusion state and a state of active transport along directed microtubule networks. Ana-
lytically, the transport properties of the particles in these dynamic models (effective velocity
and diffusion) are determined in [8] using the quasi-steady-state reduction method [7, 39, 40],
under assumptions of very fast switching rates and very slow diffusion relative to the motor
protein velocities. In many systems, however, these assumptions on the parameters of the dy-
namics are unlikely to be biologically relevant. For instance, our parameter estimation based
on FRAP microscopy data in [10] revealed that diffusion coefficients may be larger in mag-
nitude than motor speeds in Vg1 mRNA localization during Xenopus laevis oogenesis. Our
theoretical results therefore extend the analysis of transport models with parallel filaments to
general systems with arbitrary parameters.

In addition to the applicability of this analysis to many biological systems where transport
relies on parallel filaments, our derived effective transport predictions contain additional terms
in the predicted diffusivity, which can be numerically evaluated to show that nonuniform cyto-
skeleton networks lead to faster transport and a wider spread of the particles modeled. This
observation motivates the use of accurate microtubule structures with biologically informed
orientations as in [18, 48]. Evidence for variable microtubule arrangements and the resulting
cytoplasmic streaming has been previously found in Drosophila oocytes using quantification of
Particle Image Velocimetry in kinesin-dependent streaming [18]. The studies [18,49] also found
that a disordered network of filaments may balance active transport with advective fluid flows
and thus aid in targeted localization by allowing for fluctuations of motor-dependent flows.
More recently, the study [48] tested the localization of two types of mRNA at a late stage in
Drosophila oogenesis using a two-state model of the dynamics and standard values for key
dynamic parameters. We focus on a more complex four-state model for mRNA transport
and localization in the frog Xenopus laevis [10] coupled to a random but radially biased
microtubule network informed from experimental observations in [4, 17, 19, 37]. This model
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accounts for the bidirectional movement of the particles driven by kinesin and dynein motors,
both of which have been found to contribute to mRNA localization in this system [10,17,37].
In this model, parameters such as diffusion coefficients, motor velocities, and transition rates
depend on the location in the cytoplasm [10], and we use estimates of these parameters based
on the experimental data in [17].

Our approach allows us to assess transport timelines in mRNA localization and to provide
insight into additional mechanisms such as anchoring, which are challenging to study exper-
imentally in Xenopus oocytes. In particular, anchoring of mRNA at the target destination
in developing oocytes and embryos is not fully understood, with some studies suggesting an
actin-dependent mechanism at the cortex [1, 56] and proposing a role for mediating factors
and vesicles [1,24,30,56,57]. In Drosophila oocytes, [50] proposes a microtubule-independent
anchoring mechanism of bicoid mRNA at the anterior pole, while [11] suggests that apical
anchoring of RNA is microtubule-dependent in blastoderm embryos. Despite the different ex-
perimental findings in different organisms or stages of development, the numerical framework
we propose provides a way to investigate these questions and suggests that active delivery
(likely by molecular motors) is necessary for the observed timescale of proper vegetal localiza-
tion and that an anchoring mechanism (potentially dependent on mRNA already localized) is
required for robust accumulation of mRNA at the cortex in Xenopus oocytes.

2. Quantifying transport along microtubule networks using PDE models.

2.1. Model formulation. Similar to [8,23], we consider a model of the dynamics of mRNA
particles where transport is restricted to given microtubule structures. Particles can switch
between a freely diffusing state and a transport state for motor-cargo complexes with velocity
V (θ). The direction of transport θ is determined by the orientation of the cytoskeletal filament
bound to the complex at location (x, y) (see Figure 2(A)). We assume as in [8] that there is
a density ρ(r, θ) of filaments with a given orientation θ at each location r = (x, y). Particle
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Figure 2. (A) Illustration of a microtubule structure with density ρ (blue lines). Particles (red dots)
can either be transported with velocity v0 along microtubule filaments, or freely diffuse in the cytoplasm with
diffusion coefficient D0. The density of microtubules at location (x, y) with orientation θ is given by ρ(x, y, θ).
(B) Illustration of a parallel microtubule structure with density ρ(r, θ) = α(x)δ(θ − π/2) (blue lines). Here
particle transport can occur with velocity v0 straight down on parallel microtubule filaments.
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movement is then modeled using the equations

∂p(r, θ, t)

∂t
= −V (θ) · ∇p(r, θ, t)− βp(r, θ, t) + αρ(r, θ)p0(r, t) ,

∂p0(r, t)

∂t
= D∇2p0(r, t) + β

∫ π

0
p(r, θ, t)dθ − αρ̄(r)p0(r, t) ,(1)

where p0(r, t) denotes the concentration of diffusing particles at position r = (x, y) at time
t, and p(r, θ, t) is the concentration of particles bound to a microtubule at location r and
moving with velocity V (θ) [8]. Here ρ̄(r) =

∫ π
0 ρ(r, θ)dθ is the availability of filaments at a

certain location averaged over all orientations θ, β corresponds to the transition rate from the
transport state to the diffusing state, and α corresponds to the transition rate from diffusion
to transport.

Our parameter estimation results in [10] indicate that diffusion and binding rate parame-
ters can vary throughout the cytoplasm and that neither diffusion nor binding dominates the
dynamics. This suggests that existing approaches to analyze equations (1), which assume very
fast switching rates and slow diffusion compared to typical motor velocities [8], do not hold
in the case of mobility of mRNA in Xenopus oocytes. In particular, the quasi-steady-state
approximation in [8] does not apply in this setting, and we therefore proceed with different
analytical methods that do not require assumptions on the magnitude of the system param-
eters. To simplify the analysis, we start by considering the case where filaments are oriented
parallel to each other. As in [8], we let the density of filaments vary with spatial dimension x
via

ρ(r, θ) = α(x)δ(θ − π/2),

where we recall that r = (x, y) (see Figure 2(B)). The function α(x) reflects the assump-
tion that the parallel filaments have a density proportional to the concentration of surface
signaling molecules on the membrane, as in [8]. Evidence for such a relationship is found in
the distribution of microtubules in neuron growth cones, where growing microtubule ends are
regulated by and bind with GABA receptors on the membrane [5]. Thus, the function α(x)
would be given in the form of a piecewise constant step function that takes the value zero in
regions with no microtubules and a strictly positive value on microtubules.

Letting p̄(r, t) =
∫ π

0 p(r, θ, t)dθ and noting that ρ̄ =
∫ π

0 ρ(r, θ)dθ = α(x), we obtain the
equations

∂p̄(r, t)

∂t
= v0ey · ∇p̄(r, t)− βp̄(r, t) + α(x)p0(r, t) ,

∂p0(r, t)

∂t
= D∇2p0(r, t) + βp̄(r, t)− α(x)p0(r, t)(2)

for the concentrations of particles in the two states that correspond to active transport and
diffusion, respectively.

To account for bidirectional movement, more complex models with additional dynamic
states would be of interest. For instance, we found in [10] that a model with four dynam-
ical states that account for movement up along filaments, movement down along filaments,
diffusion, and pausing (see equations (38) below) may be more accurate for describing the
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mRNA dynamics in different regions of the cytoplasm. Therefore, the theoretical result in
the next section is obtained for general systems of linear advection-reaction-diffusion partial
differential equations with spatially dependent transition rates.

2.2. Main result. To determine the asymptotic behavior of particles restricted to trans-
port on parallel filaments, we calculate their effective velocity and diffusion at large time. We
consider the general case of an arbitrary number of particle populations that can move bidirec-
tionally on the microtubule tracks, diffuse or pause when off-track, and switch between these
states at given rates; more precisely, we consider the system of advection-reaction-diffusion
equations given by

(3)
d

dt




u0

u1

· · ·
un


 = D∇2




u0

u1

· · ·
un


+ C

d

dy




u0

u1

· · ·
un


+A(x)




u0

u1

· · ·
un


 , ∇ =

(
∂x
∂y

)
,

where (x, y) ∈ [0, 1]× R, D = diag(dj), C = diag(cj), together with the boundary conditions

∂uj
∂x

(x = 0, y, t) =
∂uj
∂x

(x = 1, y, t) = 0 ,(4)

for all states j with dj > 0. The variables uj ∈ R model concentrations of particles that
diffuse and are transported along a cytoskeleton of parallel vertical filaments. The diagonal
matrices C and D contain the speeds cj and diffusion coefficients dj , respectively, in each state,
while the transitions between states are described by the reaction-rate matrix A(x). The x-
dependence of the reaction-rate matrix A(x) accounts for the availability of microtubules at
a certain location. Finally, we separate the solution vector u into vectors for diffusing and
nondiffusing populations, so that u = (u1,u2) with u1 corresponding to states where dj > 0,
and introduce the space X := {u1 ∈ H2([0, 1]) : ∂u1

∂x |x=0 = ∂u1
∂x |x=1 = 0} × {u2 ∈ L2([0, 1])}.

Theorem 2.1. Assume that C and D are diagonal matrices and that the entries of D are
nonnegative. We also assume that A(x) = (aij(x))i,j=1,...,n and that each entry aij(x) satisfies
inf{|aij(x)|;x ∈ [0, 1], aij(x) 6= 0} > 0. Finally, we assume that the operators L0 := D∂2

x +
A(x) and L∗0 := D∂2

x +A(x)∗ posed on L2([0, 1]) with domain X each have a one-dimensional
null space, spanned by u0(x) and ψ0(x), respectively, and that their remaining eigenvalues
have real part strictly less than zero. Let u(r, t) denote the solution of (3) with initial condition
given by a Gaussian initial condition for each uj; then, as t → ∞, the solution has the
asymptotic Gaussian form

u(r, t) =
a√

2πσefft
e

(y+veff t)
2

2σeff t u0(x)

for some a ∈ R. Furthermore, the effective velocity veff and the effective diffusion coefficient
σeff of the particles in the direction y of transport are given by

veff =
〈ψ0, Cu0〉
〈ψ0,u0〉

,(5)

σeff =
〈ψ0, Du0〉
〈ψ0,u0〉

+
〈ψ0, Cw0(x)〉
〈ψ0,u0〉

,(6)
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where 〈f(x), g(x)〉 =
∫ 1

0 f(x)g(x)dx, and w0 is the unique solution of

L0w0(x) + Cu0(x)− 〈ψ0, Cu0〉
〈ψ0,u0〉

u0(x) = 0 , w0 ∈ X .(7)

We prove Theorem 2.1 in section 2.5.

2.3. Remarks on Theorem 2.1. To motivate the assumptions for Theorem 2.1 and show
their broad applicability, we provide the following remarks.

Remark 1. If matrix A(x) models conservation of particles, then A(x) is a quasi-positive
irreducible matrix. The Perron–Frobenius theory for quasi-positive matrices then ensures that
the zero eigenvalue has algebraic multiplicity 1 and that all other eigenvalues of A(x) have
strictly negative real part for each x. The linear operator L0 = D∂2

x + A(x) can only add
diagonal entries to matrix A(x) and is therefore also quasi-positive and irreducible. The real
part of all other eigenvalues is thus guaranteed to be less than zero, and the assumption in
the theorem is satisfied.

Remark 2. Note that in the theorem statement we make the assumption that dimN(L0) =
dimN(L∗0) = 1 (i.e., the zero eigenvalue has geometric multiplicity 1). This condition is
automatically satisfied in the case of models with one diffusing population. To see this,
assume that there are q populations that have diffusion dynamics, and p = n− q populations
that do not. We write

u(x) =

(
u1(x)
u2(x)

)
,

D =

(
D0

0

)
,

A(x) =

(
A1(x)
A2(x)

)
,

where A1 is a q-by-n and A2 is a p-by-n matrix of the reaction rates. Then u is in the null
space of L0 if

D0∂
2
xu1 +A1(x)u = 0 ,(8)

A2(x)u = 0 .(9)

Since matrix A(x) reflects conservation of the particles, the sum of each of its columns is 0.
If we have p = 1 (one diffusing population), it is clear that the sum of the rows in matrix
A2 yields −A1. Thus A2(x)u = 0 implies A1(x)u = 0, and therefore u1 satisfies the pure
diffusion equation with Neumann boundary conditions: D0∂

2
xu1 = 0. This yields u1 = 1, and

the vector u2 can then be found by solving the rank-p system for p unknowns in (8) with
given u1. Therefore, the dimension of the kernel is clearly one in this case.

For the case q > 1, the conservative nature of the rate matrix A also ensures that
(1, 1, . . . , 1)T ∈ N(L∗0); however, there is no guarantee that this is the only solution of L∗0v = 0
(see counterexample in Remark 3). This motivates our assumption that dimN(L∗0) = 1. We
note, however, that models with two diffusing species and one nondiffusing population can
also be shown to satisfy the theorem assumption.
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Remark 3. An example of a system that does not satisfy the theorem assumption would
consist of two decoupled copies of the 2-state system, each with an advection and a diffusion
state. In this case, each individual system has an eigenvalue at 0 (with one corresponding
eigenvector each). This means that the eigenvalue zero is no longer algebraically simple.

Remark 4. It is worth noting that the large-time form of u(r, t) in Theorem 2.1 is similar
to the asymptotic expansion developed formally for solutions of linear reaction-hyperbolic
equations in [42] and rigorously proven in [15, 16], where the rates of the transition reactions
are assumed to approach infinity. The result here generalizes these results for systems with
diffusion in an arbitrary number of states and focuses on the large time limit for systems
where no parameter assumptions are made.

2.4. Application to the 2-state model. We now discuss the implications of Theorem 2.1
for the 2-state system (2) with one moving and one diffusing particle population. Remark 2 of
section 2.3 guarantees that the 2-state model satisfies the conditions of Theorem 2.1. We will
show in section 2.6 that the effective velocity and diffusion of the particles under this model
are given by the following expressions:

veff =
〈α〉
〈α〉+ β

v0 ,

σeff =
β

〈α〉+ β
D0 +

β〈α〉
(β + 〈α〉)3

v2
0 +

β

(β + 〈α〉)2
v0〈α(x), w0(x)〉 ,(10)

where 〈α〉 =
∫ 1

0 α(x)dx, and w0(x) is the unique solution of

(11) D0w
0
xx =

v0

β + 〈α〉(〈α〉 − α(x)) , w0
x(0) = w0

x(1) = 0 .

Before discussing the implications of these results for transport, we briefly comment on the
expressions we obtained above. First, when the filaments are equidistributed in the domain
so that α(x) = ᾱ is a constant function, we have 〈α〉 = ᾱ, and therefore w0(x) = 0, so that
the effective velocity and diffusion constants in this simpler case are given by

(12) v0
eff =

ᾱ

ᾱ+ β
v0 , σ0

eff =
β

ᾱ+ β
D0 +

βᾱ

(β + ᾱ)3
v2

0 ;

see also [10]. Next, we compare our results with those in [8], where the additional assumption
|α| � β was used. In [8], the effective equation describing sum c(r, t) = p̄(r, t) + p0(r, t) of
the particle populations for parallel filaments became

∂c

∂t
= veff

∂c

∂y
+D(x, t)∇2c(r, t) +Qyy(x, t)

∂2c

∂y2
,

with effective velocity veff = α
β v0 and effective diffusion D(x, t)+Qyy(x, t) = (1− α

β )D0 + α
β2 v

2
0

in the y-direction. While our results are very similar to these expressions (when using the
hypothesis |α| � β that was used in [8]), it is worth noting that the expressions for the effective
velocity and diffusion in [8] maintain the spatial dependence through the concentration of
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signaling molecules α(x), whereas our large-time results depend only on the space-averaged
quantity ᾱ . Note that the last term in our expression (10) for the effective diffusion is not
captured by the analysis in [8]. The advantage of our method is that it allows derivation of
complete expressions for effective velocity and diffusion under no assumptions on the density
of the microtubules, the magnitude of the reaction rates, and the diffusion coefficient.

Next, we discuss the consequences of our results for transport. Comparing the expressions
for the effective diffusion for general filament densities α(x) in (10) with those in (12) for
constant α, we see that the expression for the effective diffusion in (10) contains the additional
term β

(β+〈α〉)2 v0〈α(x), w0(x)〉; it is this term that captures the density-dependence of diffusion.

Our next result shows that diffusion is enhanced when the filament density is not constant.

Lemma 2.2. For the 2-state advection-diffusion system (2) and any relevant parameters,
the additional term in the effective diffusion expression is nonnegative:

v =
β

(β + 〈α〉)2
v0〈α(x), w0(x)〉 ≥ 0 .

Proof. Noting that 〈α〉 = α in the case where filaments are assumed to be available
throughout the domain,

σeff − σ0
eff = v .

To determine the sign of term v, we integrate (11) against w0:

∫ 1

0
D0w

0
xxw

0dx =
v0

β + 〈α〉

∫ 1

0
(〈α〉 − α(x))w0dx .(13)

Denoting f = v0
β+〈α〉 , we have

∫ 1

0
α(x)w0(x)dx = (1/f)

(
f〈α〉

∫ 1

0
w0(x)dx−

∫ 1

0
D0w

0
xxw

0dx

)
.

Using that 〈w0(x)〉 = 0 and integration by parts combined with the Neumann boundary
conditions in (11) yields

∫ 1

0
α(x)w0dx = (1/f)

∫ 1

0
D0(w0

x)2dx ≥ 0 .

Therefore

v =
β

(β + 〈α〉)2

v0

f

∫ 1

0
D0(w0

x)2dx〉 ≥ 0 ,

so the additional term in (36) is nonnegative for all biologically relevant (positive) choices of
the transition rates, diffusion coefficient, and velocity parameters.

We note that, as outlined in section 2.1, the function α(x) can be assumed to take the form
of a step function, which clearly satisfies the requirement that inf{|α(x)|;x ∈ [0, 1], α(x) 6= 0}
> 0. Lemma 2.2 suggests that accounting for the microtubule geometry when modeling
particle transport consistently increases the effective spread of the particles in the large time
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Figure 3. (A) Illustration of α(x) for a uniformly spaced microtubule structure. (B) Illustration of α(x)
for a randomly spaced microtubule structure.

limit. In other words, we predict that the microtubule-dependent dynamics in equations (2)
has a larger spatial variability (effective diffusion in (10)) than dynamics where the transition
rates are assumed to be constant. To investigate how different arrangements of filaments may
contribute differently to the effective diffusion, we consider functions α(x) that correspond to
a uniform arrangement of microtubules (see Figure 3(A)) as well as a random arrangement
of filaments (see Figure 3(B)). The disordered structure is of interest since previous modeling
studies [18,49] have found that such networks are more optimal in localization than perfectly
aligned ones when considering the coupling of motor transport to fluid flow.

The contribution to the spread of particles is determined by integrating the second order
equation (11),

D0w
0
xx =

v0

β + 〈α〉(〈α〉 − α(x)) , w0
x(0) = w0

x(1) = 0 ,

using a centered finite difference scheme. We consider this equation on a domain of 20–30µm
(10µm visualized in Figure 3(A–B)) and assume a realistic microtubule diameter of 25 nm.

Figure 4 shows the percentage increase in the effective diffusion of particles for a set of
parameters (ᾱ, β, v0, D) estimated from mRNA FRAP data in Xenopus laevis [10]. The
choice of α(x) that reflects the uniform arrangement of microtubules in Figure 3(A) shows
an increase of almost 10% (blue line) compared to the case where spatial microtubules are
not modeled and α(x) = α (constant). For α(x) corresponding to a random arrangement of
microtubules, we consider 100 trials, with one sample distribution illustrated in Figure 3(B).
In this case, the percentage increase varies for each random position trial (red dots), but
the average increase reaches roughly 17% (yellow dotted line). While Figure 4 corresponds
to a particular set of parameters, we confirmed the larger diffusivity in the random filament
arrangement using additional parameters from data in other oocytes, as considered in [10].

2.5. Proof of Theorem 2.1.

Proof. Consider the ansatz

(14) (u1, . . . , un)T = v̄(x)eλt+ikyũ0 ,

where v̄(x) is a diagonal matrix whose jth diagonal entry is given by vj(x), and ũ0 is a vector
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Figure 4. Increase in effective diffusion of particles when microtubules are arranged uniformly, as in
Figure 3(A) (blue line), or randomly, as in Figure 3(B) (red dots for multiple trials and yellow dashed line for
average).

of initial conditions. Plugging this into (3), we obtain

Dv̄xxũ0 + (A(x) + νC + ν2D − λI)v̄(x)ũ0 = 0 .

This suggests that we can incorporate vector ũ0 with matrix v̄ into a vector v(x) so that

(15) Dvxx + (A(x) + νC + ν2D − λI)v(x) = 0 .

We define the operator

L(λ, ν) = D∂2
x +A(x) + νC + ν2D − λI ,

posed on L2([0, 1]) with domain X . Note that this operator is not necessarily self-adjoint: L0 =
L(0, 0) = D∂2

x+A(x) and L∗0 = L∗(0, 0) = D∂2
x+A∗(x). It follows from [46, Theorem 2.1] and

the assumption that each entry of the reaction rate matrix A(x) satisfies inf{|aij(x)|;x ∈ [0, 1],
aij(x) 6= 0} > 0 that the range of operator L is closed. The remaining assumptions in the
theorem statement ensure that the null space and cokernel of operator L are one-dimensional
and therefore that L is a Fredholm operator with index 0.

Since the null space of the Fredholm operator L(0, 0) is finite-dimensional, we can apply
the Lyapunov–Schmidt reduction theory to study the solutions of (15). For this construction,
we take v(x) = au0(x) +w(x), where w(x) satisfies 〈ψ0(x), w(x)〉 = 0. We can now project
the equation (rewritten below) on the range and kernel of the operator.

Dvxx + (A(x) + νC + ν2D − λI)v(x) = 0 .

Projection on the range.

Lv − 〈Lv,ψ0〉
〈ψ0,u0〉

u0 = 0 .

This gives

(D∂2
x +A(x))w(x) + (νC + ν2D − λI)(au0 +w)(16)

− a〈ψ0, (νC + ν2D − λI)u0〉
〈ψ0,u0〉

u0 −
〈ψ0, (νC + ν2D − λI)w〉

〈ψ0,u0〉
u0 = 0 ,
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where we used that L0u0 = 0 and L∗0ψ0 = 0.
The third term above can be written as

a
〈ψ0, (νC + ν2D − λI)u0〉

〈ψ0,u0〉
u0 = −aλu0 + aν(Bνu0)u0 ,

with Bν taking x to 〈ψ0,(C+νD)x〉
〈ψ0,u0〉 .

Similarly, the fourth term is

〈ψ0, (νC + ν2D − λI)w〉
〈ψ0,u0〉

u0 = ν(Bνw)u0 ,

since 〈ψ0, λw〉 = λ〈ψ0,w〉 = 0 .
Combining these, we obtain

(D∂2
x+A(x)+νC+ν2D−λI−νu0Bν)w(x)+a(νC+ν2D)u0−aλu0+aλu0−aν(Bνu0)u0 = 0 ,

and therefore

(17) (D∂2
x +A(x) + νC + ν2D − λI − νu0Bν)w(x) + a(νC + ν2D − ν(Bνu0))u0 = 0 .

Projection on the kernel.
〈ψ0, Lv〉 = 0 .

This gives
〈ψ0, (D∂

2
x +A(x) + νC + ν2D − λI)(au0(x) +w(x))〉 = 0 .

Using L0u0 = 0, 〈ψ0(x),w(x)〉 = 0, and L∗0ψ0 = 0,

〈ψ0, (νC + ν2D − λI)au0(x) + (νC + ν2D)w(x)〉 = 0 .

Therefore

λ =
〈ψ0, (νC + ν2D)(au0(x) +w(x))〉

a〈ψ0,u0〉

= ν
〈ψ0, Cu0〉
〈ψ0,u0〉

+ ν2 〈ψ0, Du0〉
〈ψ0,u0〉

+ ν
〈ψ0, (C + νD)w〉

a〈ψ0,u0〉
,(18)

where w satisfies (17).
Note that (17) can be expressed as h(ν, w(x)) = 0, where h(0,u0) = 0 and λ(0) = 0 given

(18). Since ∂h
∂w |(0,u0) = D∂2

x +A(x) with homogeneous Neumann boundary conditions in the
diffusing states, we conclude that w(x) = g(ν, x) for each x. Let

(19) w(x) = νw0(x) + ν2w1(x) +O(ν3) .

It follows that (18) becomes

λ = ν
〈ψ0, Cu0〉
〈ψ0,u0〉

+ ν2 〈ψ0, Du0〉
〈ψ0,u0〉

+ ν2 〈ψ0, Cw0(x)〉
a〈ψ0,u0〉

+O(ν3) .(20)
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We therefore need to determine w0(x). Plugging the expansion of w in the projection
into the range in (17), we obtain
(
D∂2

x +A(x) + νC + ν2D − ν 〈ψ0, Cu0〉
〈ψ0,u0〉

I +O(ν2)I − νu0Bν

)
(νw0(x) + ν2w1(x) +O(ν3))

+ a(νC + ν2D − ν(Bνu0))u0 = 0 .(21)

By collecting powers of ν in (21), we have for O(ν)

(22) (D∂2
x +A(x))w0(x) + aCu0(x)− a〈ψ0, Cu0〉

〈ψ0,u0〉
u0(x) = 0 .

Writing λ = a1ν + a2ν
2 +O(ν3) yields

a1 =
〈ψ0, Cu0〉
〈ψ0,u0〉

,(23)

a2 =
〈ψ0, Du0〉
〈ψ0,u0〉

+
〈ψ0, Cw0(x)〉
a〈ψ0,u0〉

,(24)

where w0 ∈ X satisfies (22).
We now return with this expansion to the ansatz in (14). We are particularly interested

in recovering the concentration of particles in each state for large time given these expansions.
Using the inverse Fourier transform gives

u(r, t) ≈ 1

2π

∫ δ

−δ
(au0(x) +w(x))eλt+ikydk

=
1

2π

∫ δ

−δ
(au0(x) +w(x))eik(y+a1t)−a2k2te

∑∞
j=3 aj(ik)jtdk ,(25)

with δ small. Making the change of variable k̃ = kt1/2 and ỹ = y + a1t yields

u(r, t) ≈ 1

2π
√
t

∫ δ
√
t

−δ
√
t
(au0(x) +w(x))e

ik̃ ỹ

t1/2
−a2

2
k̃2

e
∑∞
j=3 aj

(ik̃)j

tj/2−1 dk̃

=
1

2π
√
t

∫ δ
√
t

−δ
√
t


au0(x) + i

k̃

t1/2
w0(x)− k̃2

t
w1(x) +

∞∑

j=1

(ik̃)j

tj/2
wj−1(x)


(26)

× exp

(
ik̃

ỹ

t1/2
− a2

2
k̃2

)
exp



∞∑

j=3

aj
(ik̃)j

tj/2−1


dk̃ .

Since we are interested in long-term asymptotic behavior at t→∞, we note that the dominant
term in the expression in the parentheses is au0(x) and that the last exponential term in (27)
converges to 1. Therefore

u(r, t) ≈ 1

2π
√
t
au0(x)

∫ ∞

−∞
e
ik̃ ỹ

t1/2
−a2

2
k̃2

dk̃ =
a√

2πa2t
e

(y+a1t)
2

2a2t u0(x) .(27)

The Gaussian form of the asymptotic solution for large time provides the effective velocity
and effective diffusion of the particles, given by a1 and a2, respectively, in (23) and (24).
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2.6. Proof of the 2-state model results.
Setup for the 2-state system. In the 2-state model, the setup for (15) is as follows:

C =

(
v0 0
0 0

)
, D =

(
0 0
0 D0

)
, A(x) =

(
−β α(x)
β −α(x)

)
.

We assume that β > 0 and that α(x) ∈ L2([0, 1]) satisfies inf{|α(x)|;x ∈ [0, 1], α(x) 6= 0} > 0.
Solving L(0, 0) = 0 is equivalent to solving

−βv1(x) + α(x)v2(x) = 0 ,

D0∂
2
x(v2) + βv1(x)− α(x)v2(x) = 0 ,(28)

so that D0(v2)xx = 0, and with the homogeneous Neumann boundary conditions for v2, we
find that v2 = 1 (constant). Then v1 = α(x)/β, yielding

N(L(0, 0)) = (α(x)/β, 1)T .

Similarly for N(L∗(0, 0)), we solve

−β(v1(x)− v2(x)) = 0 ,

D∂2
x(v2) + α(x)(v2(x)− v1(x)) = 0 ,(29)

which yields v1 = v2 = 1. Thus

N(L∗(0, 0)) = (1, 1)T ,

so that both null spaces are finite and have dimension 1. The assumption in the theorem is
therefore satisfied.

Results for the 2-state system. We now write the results in (23) and (24) in the context of
the 2-state model. In this case we have

ψ0 = (1, 1)T ,

u0 = (α(x)/β, 1)T ,

and 〈ψ0,u0〉 = 〈1, α(x)〉/β + 1 = β+〈1,α(x)〉
β .

The fact that w ∈ N(L∗0)⊥ means that

∫ 1

0
w1(x) + w2(x)dx = 0

for w(x) = (w1(x), w2(x))T . This implies that
∫ 1

0 w2(x) = −
∫ 1

0 w1(x).
Writing λ = a1ν + a2ν

2 +O(ν3) and using (23), we have

(30) a1 = veff =
〈ψ0, Cu0〉
〈ψ0,u0〉

=
v0〈1, α(x)〉/β
〈1,α(x)〉+β

β

=
〈1, α(x)〉
〈1, α(x)〉+ β

v0 .
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Similarly, the first term in a2 is

(31)
〈ψ0, Du0〉
〈ψ0,u0〉

=
D0

〈1,α(x)〉+β
β

=
β

〈1, α(x)〉+ β
D0 .

We now need to evaluate the second term in a2, namely,

〈ψ0, Cw0(x)〉
〈ψ0,u0〉

=
β

β + 〈1, α(x)〉v0〈1, w1(x)〉 ,

where w0(x) = (w1(x), w2(x))T . Recall that w0 satisfies (22):

(D∂2
x +A(x))w0(x) + aCu0(x)− a〈ψ0, Cu0〉

〈ψ0,u0〉
u0(x) = 0 .

Therefore
(

0 0
0 D0

)(
(w1)xx
(w2)xx

)
+

(
−β α(x)
β −α(x)

)(
w1

w2

)
+

(
v0α(x)/β

0

)
− 〈1, α(x)〉
〈1, α(x)〉+ β

v0

(
α(x)/β

1

)
= 0 .

This is equivalent to solving the system

−βw1 + α(x)w2 + v0
α(x)

β + 〈1, α(x)〉 = 0 ,

D0(w2)xx + βw1 − α(x)w2 − v0
〈1, α(x)〉

β + 〈1, α(x)〉 = 0 ,

which then yields

D0(w2)xx =
v0

β + 〈1, α(x)〉(〈1, α(x)〉 − α(x)) ,(32)

w1(x) =
v0α(x)

β(β + 〈1, α(x)〉) +
α(x)

β
w2(x) .

Therefore

〈ψ0, Cw0(x)〉
〈ψ0,u0〉

=
β

β + 〈1, α(x)〉v0〈1, w1(x)〉

=
〈1, α(x)〉

(β + 〈1, α(x)〉)2
v2

0 +
1

(β + 〈1, α(x)〉)v0〈α(x), w2(x)〉 ,

where w2 satisfies (32).
Noting that the right-hand-side (RHS) of (32) satisfies 〈RHS〉 =

∫ 1
0 RHS = 0, we write

w2 = d+ w0
2 with arbitrary d ∈ R and 〈w0

2〉 = 0. w0
2 then satisfies (32) as well. This gives

w1 =
v0α(x)

β(β + 〈1, α(x)〉) +
α(x)

β
d+

α(x)

β
w0

2(x) ,

〈w1〉+ 〈w2〉 =
v0α(x)

β(β + 〈1, α(x)〉) +
α(x)

β
d+

α(x)

β
w0

2(x) + d = 0 .
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From this, we find

d = − 1

〈α〉+ β

( 〈α〉
〈α〉+ β

v0 + 〈αw0
2〉
)
,

and the expression for w1:

(33) w1 =
〈α〉

(〈α〉+ β)2
v0 −

〈α〉
β(〈α〉+ β)

〈αw0
2〉+

α

β
w0

2 .

Then the second term in a2 becomes

〈ψ0, Cw0(x)〉
〈ψ0,u0〉

=
β

β + 〈1, α(x)〉v0〈1, w1(x)〉

=
β〈α(x)〉

(β + 〈1, α(x)〉)3
v2

0 +
1

(β + 〈1, α(x)〉)v0〈α(x), w0
2(x)〉

(
− 〈α〉

(β + 〈1, α(x)〉) + 1

)

=
β〈α(x)〉

(β + 〈1, α(x)〉)3
v2

0 +
β

(β + 〈1, α(x)〉)2
v0〈α(x), w0

2(x)〉 .(34)

Collecting all the derived terms, we conclude that

a1 = veff =
〈1, α(x)〉
〈1, α(x)〉+ β

v0 ,(35)

a2 = σeff =
β

〈1, α(x)〉+ β
D0 +

β〈1, α(x)〉
(β + 〈1, α(x)〉)3

v2
0 +

β

(β + 〈1, α(x)〉)2
v0〈α(x), w0

2(x)〉(36)

with

(37) D0(w0
2)xx =

v0

β + 〈1, α(x)〉(〈1, α(x)〉 − α(x)) , (w0
2)x(0) = (w0

2)x(1) = 0 .

As discussed in section 2.4, this calculation agrees with the results of the quasi-steady-state
analysis in [8] given their assumption α(x)� β (which implies β

β+α(x) ≈ 1).

3. Random planar microtubule networks and anchoring of mRNA. Our analytical ap-
proach applies to determining the large time mobility behavior of biological particles under
the assumption of a parallel array of microtubular filaments. However, Xenopus laevis oocytes
display microtubules that are randomly oriented in the cytoplasm, with a bias towards a radi-
ally outward orientation (see [17, Figure S3]). Therefore, we construct microtubule structures
ρ(r, θ) that reflect this outward orientation by adapting the approach proposed in [48] (see
Figure 5(A)). Since the large-time analysis is more challenging under the assumption of ra-
dially outward microtubules, we use multiple model microtubule structures combined with a
more realistic model and a numerical approach similar to [48] to investigate the mRNA spatial
distribution at different times during localization.

3.1. Four-state transport model and choice of microtubule networks. In [10], we showed
that accounting for bidirectional transport of mRNA using a more complex 4-state model leads
to parameter estimation results that agree well with the mRNA localization data in Xenopus
laevis oocytes [17]. Here we extend the 4-state model in [10] to incorporate the underlying
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microtubule networks on which active transport of mRNA occurs. In equations (38), u+

corresponds to a population of particles carried by one type of motor protein down to the
vegetal cortex, u− corresponds to a population transported by other motor proteins up to the
nucleus, v is a population freely diffusing in the cytoplasm with diffusion coefficient d, and w
corresponds to a population of mRNA paused on the microtubules. As before, these variables
refer to the concentrations of particles in each of these states. The switching of the mRNA
between these four different dynamical states occurs through binding and unbinding reactions
as follows:

vt = d∆v − β+v + γ+u
+ − β−v + γ−u

−,(38a)

u+
t = ∇(c+vmu

+) + β+v − γ+u
+ + α+w − δ+u

+,(38b)

u−t = −∇(c−vmu
−
y ) + β−v − γ−u− + α−w − δ−u−,(38c)

wt = δ+u
+ + δ−u

− − α+w − α−w ,(38d)

where vm is a velocity field as in [10] derived from the assumed cytoskeletal network that we
describe in section 3.2. The transition rates between the four different states are illustrated
in [48, Figure 3B]. We note that these equations extend the 2-state model in [48], but do
not account for cytoplasmic flow driven by kinesin motor transport. In Drosophila oocytes,
the mRNAs are synthesized in the attached nurse cells and transported into the oocyte, so
cytoplasmic flows may be important in the mobility of RNA [58]. By contrast, in Xenopus,
oocyte mRNAs are synthesized in the oocyte nucleus, and thus we do not consider flows in
our simulations of mRNA localization. It is also worth noting that [48] concludes that the
cytoplasmic flows do not play a key role in the localization process.

Given the randomness in microtubule orientations in many biological systems [18], our
findings in section 2.4 motivate the study of particle dynamics using realistic geometries of
the cytoskeleton informed from experimental data. To better understand mRNA localization
mechanisms in Xenopus oocytes, we therefore consider accurate filament orientations inspired
from microtubule experiments in [17, 19]. In particular, we first generate model microtubule
structures by adapting the algorithm in [48] to reflect a two-dimensional geometry and the
assumptions needed for Xenopus laevis oocytes. To create the microtubule network, a random
cytoplasmic location (in the circular annulus excluding the nucleus) is chosen as an initiation
point for each microtubule. For the microtubule lengths, we consider an exponential distri-
bution of filament lengths and assume that the mean microtubule length is 9µm, as informed
by [20, 21, 38, 45]. Both our results and the findings in [48] are not changed by considering
this simpler exponential distribution of microtubule lengths instead of a Gamma distribu-
tion that has been proposed to describe the catastrophe lengths of microtubules observed
experimentally [21].

As in [48], we model each microtubule as a sequence of straight polymer segments with
variable orientations. The direction of the first segment is generated in an outward radial
direction or drawn randomly and accepted only if the orientation is pointing inside the allowed
geometry [48] (oocyte annulus in our case). For the subsequent segments, we draw directions
from the von Mises distribution on a circle with a given likelihood that the next generated
segment has a similar orientation to the previous one [48]. For most simulations, the bias for
a radially outward orientation of microtubules in Xenopus oocytes [19] leads to our modeling
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Figure 5. (A) Sample microtubule structure with 1000 filaments. (B) Initial mRNA particle distribu-
tion assuming that the mRNA initially accumulates next to the nucleus. Color bar for the constructed color
map is included: yellow corresponds to a high density of mRNA, and increasingly red shades denote smaller
concentrations of mRNA; white regions have no mRNA traces.

assumption that half of the microtubules start with random orientations and half start with
radially outward orientations in the first segment.

Simulations of localization discussed in the next sections are run with 50000–60000 fila-
ments for numerical stability, with Figure 5(A) showing a sample microtubule structure with
1000 filaments for ease of visualization. While it is challenging to quantify the differences
between these model structures and images of the microtubule cytoskeleton as in [4,19], these
structures compare well visually with the observed experimental structures. It is worth noting
that the microtubule filaments are dynamic and undergo catastrophes on the timescale of lo-
calization, with mean lifetimes of roughly 5 minutes on average [21]. As a result, we generate
multiple such structures and draw from them at random to set a distinct background mi-
crotubule structure at each hour in the simulation of the partial differential equation models
(38) considered (more frequent changes do not impact results but increase the computational
time).

3.2. Numerical simulations of transport dynamics. In this section we discuss numerical
and data analysis methods that will be used in section 3.3 below to develop simulations of
mRNA localization in Xenopus oocytes and to compare results to experimental images.

We consider a two-dimensional domain corresponding to a circular oocyte of radius 150µm
(the average radius for oocytes in stage II of oogenesis [17]) and nucleus of radius 50µm. In our
simulations, we nondimensionalize lengths so that we consider radius R = 1, x ∈ [−1, 1], and
y ∈ [−1, 1]. The grid size in our simulations of localization is a square of side 1.5µm. To ensure
that we can simulate transport along microtubules for the advection term in the simulations,
we find that we need roughly 9 microtubule segments on average per square grid. Assuming
a microtubule diameter of 25 nm, a uniform distribution of microtubules would correspond in
our simulations to an average distance of 0.14µm between microtubules. While there are no
references for microtubule spacing in live egg cells, this value is on a similar order of magnitude
to distances between microtubule bundles in axons and dendrites (0.02–0.065µm) [27].

In addition, we follow the approach in [48] to calculate the velocity field vm (see (38))
where active transport by molecular motor proteins can occur. For this, we calculate the
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midpoint of each microtubule segment, and sum vectorially the orientations of all segments
whose midpoints are located in the same grid area [48]. After normalizing, this yields a local
motor-velocity vector field representing the direction along which mRNA molecules can be
actively transported by kinesin or dynein motor proteins.

The dynamics of the mRNA is then simulated using the 4-state model in equations (38).
The partial differential equations are solved using a finite-volume discretization on staggered
grids with no flux boundary conditions [48,54]. Our implementation of the numerical methods
extends the algorithm in [48] to account for two active transport states as well as an additional
paused state as modeled in equations (38). In addition to considering bidirectional transport
in the 4-state model, our simulations use realistic spatially dependent parameters that we
previously estimated from FRAP data in [10]. We note that in that study we carried out
parameter estimation in 3 annular regions where FRAP experiments are performed in the
oocyte cytoplasm [10,17]. Here we assume that Region 1 extends 20µm from the nucleus into
the cytoplasm, and Region 3 extends 40µm from the vegetal cortex into the cytoplasm (see
Figure 5(B)). We use distinct parameters for each region as estimated in [10] (d, c+, c−, α+,
α−, δ+, δ−) and set the microtubule binding/unbinding rates (β+, β−, γ+, γ−) constant as
justified in [10]. In our simulations, we set a smooth transition (modeled by a tanh function)
over a small spatial radius for parameters that vary in adjacent annular regions. In addition,
we set the velocity of the moving population to 0 at the cortex boundary and allow this speed
to decrease from its estimated value in the cytoplasm to 0 in a smooth way as well.

The initial conditions for equations (38) are set to model the early initial accumulation of
mRNA in the perinuclear cup region (under the nucleus) in stage II-III Xenopus oocytes [17].
We consider a uniform initial condition over a region comparable to experimental observations
as illustrated in Figure 5(B). This figure also provides the MATLAB color map created to
visualize the results of our simulations and to compare with [17, Figures 1C, 3D, and S2,
A–C].

To compare the results of our numerical simulations with experiments, we consider snap-
shots of the mRNA distribution at different times throughout localization, as provided in [17],
as well as the time evolution of the mRNA distribution, as provided in the accompanying video
(M118608 01.avi [local/web 1.54MB]). To extract additional spatial information from the ex-
perimental images, cytoplasmic RNA localization in experimental images is also quantified
using a custom macro developed for the Fiji distribution of the image processing program Im-
ageJ (version 1.51k; [43,44]). The macro, which is available at [29], measures the fluorescence
intensity in two-dimensional concentric rings (bins) within the oocyte. Based on user-defined
input of oocyte and nuclear diameter, the program creates five equally spaced concentric rings
(bins) starting at the oocyte periphery and ending at the nuclear periphery. To avoid signal
from background and autofluorescence, a threshold is set to consider only pixels within 50%
of the maximum observed pixel intensity. The amount of fluorescence is then measured and
recorded for each annulus region that forms between consecutive rings.

3.3. Insights into mRNA localization and anchoring at the cell cortex.
The proposed model for mRNA transport on microtubules reproduces observed spatial scales

of localization. Figure 6 illustrates the distribution of total mRNA 10 hours (left) and 24 hours
(right) into localization. The top panel corresponds to simulations with model microtubule

M118608_01.avi
http://epubs.siam.org/doi/suppl/10.1137/18M1186083/suppl_file/M118608_01.avi


2874 M.-V. CIOCANEL, B. SANDSTEDE, S. P. JESCHONEK, AND K. L. MOWRY

C D

A B
10 hours 24 hours

1/
2 

ra
nd

om
2/

3 
ra

nd
om

0

0.5

1

1.5
10-3

Figure 6. Predicted mRNA localization distributions 10 (A, C) and 24 (B, D) hours into localization, with
transport restricted to microtubule structures (gray background) as in Figure 5(A) (see also the accompanying
video file M118608 01.avi [local/web 1.54MB]). The concentric circles drawn in black divide three regions of the
vegetal cytoplasm where FRAP experiments have been performed [17]; rate and velocity parameters are constant
within each region but differ across regions [10]. (A, B) The label 1/2 random corresponds to starting random
orientations in half of the model microtubules. (C, D) The label 2/3 random corresponds to two-thirds of the
filaments initialized with random orientations. The color bar from Figure 5 is included.

structures where half of the filaments are initialized with random orientations and half with
a radial outward direction. The bottom panel corresponds to simulations where two-thirds of
the filaments start out with random orientations, leading to a significantly more spread out
distribution of mRNA throughout the process. We note that the simulation is run on a full
circular oocyte, but the dynamics is confined to the vegetal half cytoplasm (as shown) due to
the initial accumulation of the particles. In addition, the gray background corresponds to the
averaged density of microtubules at each location. This approach allows for comparison to
imaging results obtained through injection of fluorescently labeled RNA in Xenopus oocytes
[17]. The top panel of Figure 6 predicts that the particles are largely confined to a wedge
region in the lower cytoplasm, which compares well with the spatial distribution of mRNA
in [17, Figures 1C, 3D, and S2, A–C]; see also the accompanying video (M118608 01.avi
[local/web 1.54MB]) for an hour-by-hour predicted evolution of the mRNA distribution.

Anchoring a moving population of mRNA particles may be most efficient in achieving faster
localization. An alternative way to quantify the amount of mRNA localized at the vegetal
cortex is visualized in Figure 7(A). There, we plot the time evolution of the fraction of mRNA
located within 10% of the cortex, as predicted by our simulations. We note that the fraction
of localized mRNA reaches roughly 80% in 24 hours of localization, and only slightly increases
at the end of 48 hours (results not shown). Since complete localization of mRNA is crucial at
this stage of egg cell development and normally occurs within 1–2 days, our results suggest

M118608_01.avi
http://epubs.siam.org/doi/suppl/10.1137/18M1186083/suppl_file/M118608_01.avi
M118608_01.avi
http://epubs.siam.org/doi/suppl/10.1137/18M1186083/suppl_file/M118608_01.avi
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Figure 7. Predicted fraction of mRNA within 10% of the cortex throughout 24 hours of localization for a
sample oocyte with no anchoring (A); with anchoring of the transport down state near the vegetal cortex (B); and
with time-dependent anchoring near the vegetal cortex as described in the text (C). The spatial distribution of
the simulated particles at 10 and 24 hours into localization corresponding to (A) is illustrated in Figure 6(A, B).

that a potential anchoring mechanism at the cortex may contribute to the observed timescale
of healthy localization and development in Xenopus oocytes.

While previous studies agree that Vg1 mRNA is anchored at the cell cortex, the mech-
anisms of this process are not known. Cytoskeleton-dependent RNA anchoring has been
suggested in other developmental systems. In Drosophila, both actin and microtubules have
been implicated in anchoring RNA in oocytes and embryos, respectively [2, 12]. Likewise,
pharmacological disruption of actin microfilaments [31, 55] in Xenopus oocytes causes the
release of anchored Vg1 mRNA from the cortex. Evidence for microtubule-mediated an-
choring in Xenopus oocytes has been inconclusive [1, 31], but other cytoskeletal elements,
such as cytokeratins, have been implicated [1, 33]. Cytoskeleton interacting proteins have
also shown a critical role in RNA anchoring in the Drosophila oocytes. Such factors include
actin-associated proteins [2], endocytic pathway components [47], locally synthesized mater-
nal determinants [53], and even the motor protein dynein [11, 12]. Although no anchoring
protein has been identified in Xenopus, depletion of other localized RNAs releases anchored
Vg1 mRNA, suggesting a potential RNA-dependent RNA anchoring mechanism [24, 30, 32].
Despite the limited experimental insight into the anchoring mechanisms, our model allows us
to investigate the importance of this process by changing the transition rates between states
in an anchoring region (assumed to be 5% from the cortex in our simulations).

In the 4-state model (38) that yields the spatial localization in Figures 6(A, B), we can
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Figure 8. (A) Predicted fraction of localization at 24 hours of simulation; each of the four mRNA states
is fully anchored within 5% of the vegetal cortex for parameters from four sample oocytes. The dark blue bar
of oocyte 1 corresponds to the RNA distribution illustrated in Figure 6(B). (B) Predicted mRNA localization
distribution at 24 hours under anchoring of the transport down state (light blue bar for oocyte 1). (C) Predicted
mRNA localization distribution at 24 hours under anchoring of the transport up state (green bar for oocyte 1).
The color bar from Figure 5 is included.

anchor any particular state (transport down, transport up, diffusing, or paused) by setting the
reaction rates out of the chosen state to 0 in the anchoring region. For example, setting rates
γ+ = δ+ = 0 (equations (38) and [10, Figure 3B]) next to the vegetal cortex is equivalent to
allowing particles to be transported down in this region, but once they reach this state they
cannot transition to the diffusion or paused state and are therefore anchored with the attached
motor proteins. Figure 8 shows the results of anchoring each state in the 4-state model for
simulations of four sample individual oocytes with their corresponding parameter estimates
from [10]. While the percentage of localized mRNA increases to some extent when anchoring
the paused or diffusing states, Figure 8 clearly suggests that anchoring of the transport down
state is most efficient in guaranteeing complete or almost complete localization of mRNA.

These results indicate that anchoring at the cell cortex may depend on stabilization of
cargo that is likely actively delivered by molecular motors to the vegetal pole. This hypothesis
is supported by experiments in [17, Figure S8], where the motor proteins are found to colocalize
with Vg1 RNA at the vegetal cortex 24 hours into localization. While dynein and kinesin
motors are hypothesized to be primarily responsible for RNA transport in the upper and
lower vegetal cytoplasm in Xenopus oocytes [17], our results suggest that an active movement
state potentially involving molecular motors may be involved in anchoring of mRNA in this
system.

Time-dependent anchoring of mRNA captures the spatial distribution of localization. Figure 8
shows the percentage of mRNA localized 24 hours into localization, yet it does not reveal the
dynamics throughout the process. Figure 7(B) illustrates that allowing complete anchoring of
the transport down state (light blue bars in Figure 8) leads to localization of 90% of mRNA
particles in less than 8 hours, which is faster than observed in experiments [17]. Therefore,
in addition to pointing to a necessary anchoring mechanism in the vegetal cortex, another
potential insight from our simulations is that the transition rates in this anchoring region may
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Figure 9. Comparison of the amount of mRNA localized at 10 (A), respectively, 24 (B) hours in each radial
spatial bin (bin 0 is closest to the nucleus, and bin 4 is closest to the vegetal cortex).

depend on the amount of mRNA already localized, which may open up more binding sites for
anchoring additional mRNA and varies with time [24,30].

A simple test of this hypothesis is to consider transition rates that vary with time in
our simulations. In particular, we allow the rates out of the transport down state (δ+, γ+) to
decrease smoothly from the estimated values for the lower cytoplasm region in [10] to 0, so that
this transport state progresses towards complete anchoring. In addition, we also vary rates β−
and α− from values an order of magnitude larger than estimated in [10] to their original values,
thus allowing for potential recycling of motor proteins so that they can transport additional
cargo to the vegetal cortex. We compare our simulations to measures of mRNA content
that we extract from experimental images 10 and 24 hours into localization [17, Figure S2]
in each spatial annulus around the oocyte nucleus (as described in section 3.2). This time-
dependent rate scenario provides the best fit of our simulation results to these measurements of
mRNA content from experimental images, as illustrated in Figure 9. The progression towards
complete anchoring in these transition rates also influences the timescale of localization (see
Figure 7(C)) in our model simulations.

4. Conclusions. The present work proposes models of intracellular transport that take
into account the microtubule networks along which molecular motor proteins transport var-
ious proteins and vesicles. We carry out a theoretical analysis of linear partial differential
equations that model concentrations of cargo which can diffuse, pause, or move bidirectionally
with space-dependent velocities on a network of parallel microtubules (with space-dependent
densities) and determine explicit expressions for effective velocity and diffusion rates for the
modeled particles at large times. Numerical simulations building on these theoretical re-
sults show that randomly distributed microtubules lead to higher effective diffusion (spread)
of cargo, thus indicating that realistic microtubule cytoskeletons should be used in mRNA
transport models. Compared with prior theoretical work [8, 23], our theoretical analysis is
not restricted to small diffusion and fast reaction rates, as these assumptions may not hold in
biological applications as considered here.

We therefore consider a previously validated model [10] of mRNA transport in Xenopus
laevis oocytes along microtubules with experimentally informed geometries. Specifically, we
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carry out numerical simulations as in [48] of a model that combines diffusion of mRNA in
the cell, transport along a discrete microtubule network with orientations and densities as
observed in Xenopus oocytes, and possible anchoring mechanisms at the cortex (with param-
eters estimated from FRAP microscopy data in [10]). Our results reproduce experimentally
observed localization patterns and indicate that anchoring is needed to reproduce the biolog-
ical timescales.

Our approach to modeling motor-driven transport of mRNA in Xenopus oocytes, as well
as previous modeling efforts [8,23,48], assume that molecular motors are available in unlimited
supply in the cytoplasm of oocytes at this stage. By including the microtubule cytoskeleton
into our models, we are accounting for spatial binding and unbinding of mRNA to the fila-
ments, and are assuming that molecular motors would be available to transport the mRNA
once the particles switch to a moving state. While there is no definite experimental evidence,
mRNA transport may be rate-limited by the number of kinesin and dynein motors in the
cytoplasm. This would explain the need for models that account for bidirectional transport
(such as equations (38)). Interactions between cytoplasmic dynein and kinesin have been
identified in an array of systems, with mechanisms for interaction of these opposite polarity
motors ranging from “tug-of-war” to regulated coordination, as well as roles in motor recy-
cling [3, 6, 9, 13, 22, 25, 26, 28, 34, 35, 51, 52]. Since complete localization of mRNA is key to
development of the frog embryo, bidirectional transport may ensure that dynein (and/or ki-
nesin) can fully explore the cytoplasm of the cell while searching for cargo. Including motor
availability into these transport models would lead to useful mathematical models that avoid
the challenging problem of estimating transition rates for mRNA bound to various numbers
(and types) of motors, as these rates are largely unknown.
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our application. Part of this research was conducted using computational resources and ser-
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