MATH 219: MULTIVARIABLE CALCULUS (SECTION 4) SPRING 2024

Midterm Exam \#1 (Total Points: 100)

Name: Solutions
(1) (a) (15 pts) Let L be the line in 3 -space that's parametrized by $\vec{x}(t)=(-7 t-2,-3-t, 5 t)$. Find an equation of the plane that contains L and the point $(1,1,5)$.
(b) (5 pts) What is a parametrization of this plane?
(Ia) Need a pt on the plane $\}$ a vecw, 1 to he plane.
Take pr to be $(1,1,5)$.
We can tula normal veeter by taking 2 Vectors un te plane $\{$ computing tier cross product.
a pts on line L:

- $t=0 \Rightarrow(-2,-3,0) \leftarrow p_{0}$
- $t=1 \Rightarrow(-9,-4,5)<p_{1}$
∂ vector on place:
- $\vec{p}_{0}-(\overrightarrow{1,1,5)}=(\overrightarrow{-3,-4,-5)}$
- $\vec{p}_{1}-(\overrightarrow{1,1,5)}=(\overrightarrow{-10,-5,0})$

$$
(-3,-4,-5) \times(-10,-5,0)=(-25,50,-25)
$$

\Rightarrow Equit-a place: $-25(x-1)+50(y-1)-25(t-5)=0$.
(16)

plane p his parareterizah. :

$$
\vec{x}(s, t)=\vec{p}+s \vec{a}+t \vec{b}
$$

\Rightarrow Dh plaza can be paroreterixaz by:

$$
\vec{x}(s,+)=\left(\overrightarrow{1,1,5)}+s\left(-\frac{)}{-3,-4,-5)+t(\sqrt{10,5,0})}\right.\right.
$$

(2) (15 pts) Let L be the line in 3 -space that's parametrized by $\vec{x}(t)=(2 t-5,3-t, 4)$. What is the distance between L and the point $(1,-2,3) \%$
call this pr Q

$$
\vec{x}(t)=\underbrace{(-5,3,4)}_{\text {pt p }}+\underbrace{\substack{(2,-1,0)}}_{\begin{array}{c}
\text { he dread } \\
\text { vector for } \\
\text { line }
\end{array}}
$$

Schematic picture:

The distance were looking for is $\| \overrightarrow{P Q}$ - $P \dot{\rho}$ a $\overrightarrow{P Q} \|$.

$$
\begin{aligned}
& \vec{P}_{Q}=(\overrightarrow{(1,-2,3)}-(\overrightarrow{-5,3,4)}=(\overline{6,-5,-1)} . \\
& \operatorname{Proj}_{a} \vec{P}_{Q}=\left(\frac{\vec{a} \cdot \overrightarrow{P Q}}{\vec{a} \cdot \vec{a}}\right) \vec{a} \\
& =\left(\frac{17}{5}\right) \xrightarrow[(2,-1,0)]{ }=\left(\frac{2 \pi}{5}, \frac{-17}{5}, 0\right) \\
& \Rightarrow\|\overrightarrow{P Q}-\operatorname{Prj} \vec{a} \overrightarrow{P Q}\|=\left\|\left(\frac{-4}{5}, \frac{-8}{5},-1\right)\right\| \\
& =\sqrt{\frac{16}{25}+\frac{64}{25}+\frac{25}{25}} \\
& =\sqrt{\frac{105}{25}} .
\end{aligned}
$$

(3) In this problem, $\vec{a}=\overrightarrow{(1,2,3)}, \vec{b}=\overrightarrow{(-1,1,2)}$, and $\vec{c}=\overrightarrow{(2,1,4)}$.
(a) (5 pts) Compute the area of the parallelogram whose edge vectors are \vec{a} and \vec{b}.
(b) (5 pts) Find the volume of the parallelepiped whose edge vectors are \vec{a}, \vec{b}, and \vec{c}.
(c) (5 pts) Does the ordering:

- 1. $\overrightarrow{\vec{a}}$
- 2. \vec{b}
- 3. \vec{c}
satisfy the right-hand rule? Why or why not?
(39)

$$
\begin{aligned}
& \text { Ares }=\|\vec{a} \times \vec{b}\| \\
& \vec{a} \times \vec{b}=(\overrightarrow{1,-5,3)} \Rightarrow\|\vec{a} \times \vec{b}\|=\sqrt{35} .
\end{aligned}
$$

(36) Volume $=|(\vec{a} \times \vec{b}) \cdot \vec{c}|=$

$$
=|(1,-5,3) \quad \cdot(2,1,4)|=(9)
$$

Yes br argon pant your neat fingers (minus thumb) 'n the dheucri- of \vec{a} of
cal you fingers twalds \vec{b}, you truss pas truss $\frac{\rightharpoonup}{c}$.

Another way ti see this: Fane the manx $\left[\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ 1 & 1 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 1 & 1 \\ 3 & 2 & 4\end{array}\right]$.

It has posited determinant (t^{\prime} ' 9), so \vec{a}, filloulb by \vec{b}, then \vec{c}, is in ngat-hand ate.
(4) (a) (10 pts) Sketch a graph of the surface $y^{2}+z^{2}-x^{2}=1$ using the level curves and contour curves approach. Label one of the level curves and one of the contour curves.
(b) (5 pts) Suppose we stretch this surface by a factor of 3 in the y-direction. We get a new surface; find an equation for this new surface.
(a) level curves:

$$
\begin{aligned}
& y^{2}+z^{2}-(\sqrt{3})^{2}=1 \Rightarrow y^{2}+z^{2}=4 \\
& y^{2}+x^{2}-(\sqrt{3})^{2}=1 \Rightarrow y^{2}+z^{2}=4 \\
& y^{2}+z^{2}-(0)^{2}=1 \Rightarrow y^{2}+z^{2}=1
\end{aligned}
$$

graph:

(b) $\left(\frac{1}{3} y\right)^{2}+z^{2}-x^{2}=1$ d $\frac{y^{2}}{9}+z^{2}-x^{2}=1$

Then the pt $(0,3,0)$ is on the goon $\}(0,3,0)$ is what you get when you state the pt $(9,0)$ out by a factor or 3 .
(5) (a) (15 pts) Let P be the point in 3 -space with rectangular coordinates $(1,-1, \sqrt{6})$. Write down cylindrical and spherical coordinates for P. You might find it helpful to recall that $\frac{\sqrt{6}}{\sqrt{8}}=\frac{\sqrt{3}}{2}$.
(b) (10 pts) Let $f(x, y)=\frac{\cos (3 x)}{e^{2 y}}$ and $a=\left(\frac{\pi}{3},-1\right)$. Find the gradient vector $\nabla f(a)$.
(5a) cylindncal cooldnaztes: $(1, \theta, z)$

Pt p in cylindxed coothace is $\left(\sqrt{2}, 315^{\circ}, \sqrt{6}\right)$.
(56) Spherical cosinaxes (ρ, φ, θ) :

Toga $p\{\varphi:$

$$
\begin{aligned}
& \sin A=\frac{\sqrt{6}}{\sqrt{8}}=\frac{\sqrt{3}}{2} \\
& \Rightarrow A=60^{\circ} \\
& \Rightarrow \varphi=90^{\circ}-A=30^{\circ}
\end{aligned}
$$

(6) (10 pts) Below are some level curves for a function $z=f(x, y)$.

Figure 1.
Assume that the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist. Also assume that the level curves not drawn occur at values of z that are strictly between those that are drawn and that segments that look vertical are actually vertical. Now consider the point (p_{1}, p_{2}) above.

- Is $\frac{\partial f}{\partial x}\left(p_{1}, p_{2}\right)$ positive, negative, or 0 ? Why?
- Is $\frac{\partial f}{\partial y}\left(p_{1}, p_{2}\right)$ positive, negative, or 0 ? Why?

Les a be $2 \sin a l l+>0$.

$$
\begin{aligned}
\frac{\partial f}{\partial x}\left(p_{1}, p_{2}\right) \text { is ar(nxim>tel) } \begin{aligned}
& \frac{f\left(p_{1}+a, p_{2}\right)-f\left(p_{1}, p\right)}{\left(p_{1}+a\right)-p_{1}} \\
& =\frac{f\left(p_{1}+a, p\right)-f\left(p_{1}, R\right)}{a}>0
\end{aligned}>0
\end{aligned}
$$

$\frac{\partial f}{\partial y}\left(p_{1}, R_{2}\right)$ is arfnximaledy

$$
\begin{aligned}
& \frac{f\left(p_{1}, p_{1}+a\right)-f\left(p_{1}, p_{2}\right)}{\left(p_{2}+a\right)-p_{2}} \\
= & \frac{f\left(p_{1}, p_{2}+a\right)-f\left(p_{1}, p_{2}\right)}{a} \\
= & \frac{0}{a}=0 .
\end{aligned}
$$

