Note: For vector fields where I do not specify the domain you can assume that the domain is all of \mathbb{R}^{2} or \mathbb{R}^{3} as appropriate.

1. Let C be the closed piecewise smooth curved formed by first following a straight path from $(0,0,0)$ to $(1,0,0)$. Then following $(\cos t, \sin t, 2 t / \pi)$ for $t \in[0, \pi / 2]$ from $(1,0,0)$ to $(0,1,1)$, and finally following $\left(0,1-t, 1 / 2(1-t)^{2}+1 / 2(1-t)\right)$ for $t \in[0,1]$ from $(0,1,1)$ back to $(0,0,0)$ in that order. Let $\vec{F}=\left(2 x y z+\sin x, x^{2} z, x^{2} y\right)$. Compute

$$
\int_{C} \vec{F} \cdot d \vec{s}
$$

2. Let C be the closed piecewise smooth curve formed by traveling in straight lines between the points $(1,0,0),(0,1,0),(0,0,1)$ and back to $(1,0,0)$ in that order. Let $\vec{F}=(1,1,1)$. Compute

$$
\int_{C} \vec{F} \cdot d \vec{s}
$$

3. Let $\vec{F}=\left(x^{2} y+x, y^{3}-x y^{2}\right)$ and let C_{a} be the circle of radius a centered at the origin with a counterclockwise orientation and let C_{b} be the circle of radius b with $0<b<a$ centered at the origin with a clockwise orientation. Compute

$$
\int_{C_{a}} \vec{F} \cdot d \vec{s}+\int_{C_{b}} \vec{F} \cdot d \vec{s} .
$$

4. Let \vec{v} be a constant vector field and let M be a surface with boundary to which Stokes' theorem applies. Show that

$$
2 \int_{M} \vec{v} \cdot d \vec{S}=\int_{\partial M} \vec{v} \times(x, y, z) \cdot d \vec{s} .
$$

5. Let D be the solid described in spherical coordinates as $(\rho, \theta, \phi) \in[0,1] \times[0,2 \pi] \times[0, \pi / 3]$. Orient ∂D so that the normal vectors point outward. Compute the flux through ∂D for the following vector fields
(a) $\vec{F}=(y+z, x+z, x+y)$
(b) $\vec{F}=(x, y, z)$
6. Let M be the lateral surface of the unit cylinder centered around the z axis between $z=0$ and $z=2$ planes. Orient M so that the surface normals point away from z axis (outward facing). Let $\vec{F}=\left(x^{3} z+x^{2},-3 y x^{2} z+z^{3},-2 z x\right)$. Compute

$$
\int_{M} \vec{F} \cdot d \vec{S}
$$

7. Define the vector field $F: \mathbb{R}^{2} \backslash\{(0,0),(1,0)\} \rightarrow \mathbb{R}^{2}$ as

$$
F(x, y)=A\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)+B\left(\frac{-y}{(x-1)^{2}+y^{2}}, \frac{x-1}{(x-1)^{2}+y^{2}}\right)
$$

(a) Let C be a simple closed curve that does not contain $(0,0)$ or $(1,0)$ given counterclockwise orientation. Compute

$$
\int_{C} \vec{F} \cdot d \vec{s}
$$

(b) Let C be a simple closed curve that contains $(0,0)$ but does NOT contain $(1,0)$ given counterclockwise orientation. Compute

$$
\int_{C} \vec{F} \cdot d \vec{s}
$$

(c) Let C be a simple closed curve that contains $(1,0)$ but does NOT contain $(0,0)$ given counterclockwise orientation. Compute

$$
\int_{C} \vec{F} \cdot d \vec{s}
$$

(d) Let C be a simple closed curve that contains $(1,0)$ and $(0,0)$ given a counterclockwise orientation. Compute

$$
\int_{C} \vec{F} \cdot d \vec{s}
$$

Hint: Use parts (b) and (c) and try to exploit suitable cancellations between the contours. Bonus problem

1. Let $\gamma(t): I \subset \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a simple closed curve whose image lies in the right half plane. Prove that the lateral surface area of the surface of revolution generated by revolving the image of γ around the y axis is equal to $2 \pi l(\gamma) \bar{x}$ where $l(\gamma)$ is the length of the image of γ and \bar{x} is defined as

$$
\bar{x}=\frac{1}{l(\gamma(I))} \int_{\gamma(I)} x d s
$$

i.e. the average value of x along $\gamma(I)$
\# First, we compute $\nabla \times \vec{F}$ to Check for pathirdependence (since domain is simply corrected the is sufficient.)

$$
\begin{aligned}
\nabla x \vec{F} & =\left|\begin{array}{ccc}
i & 0 & 16 \\
\partial x & 2 y & \partial z \\
2 x y z+\sin x & x^{2} z & x^{2} y
\end{array}\right| \\
& =\left(x^{2}-x^{2},-2 x y+2 x y, 2 x z-2 x z\right) \\
& =(0,0,0)
\end{aligned}
$$

Therefore \vec{F} is parr indepedut, Since C is a closed cure

$$
\int_{c} \vec{F} \cdot d \vec{s}=0
$$

\#2
$\nabla \times \vec{F}=0$ and C is again
a closed carve. Therefore, we have

$$
\int_{c} \vec{F} \cdot d \vec{s}=0
$$

* 3

Let D be the region between C_{0} ard Cur 2 cereen'stheorem tells us that

$$
S_{\partial D} \vec{F} \cdot d \vec{s}=\int_{D}(\nabla \times \vec{F}) \cdot \hat{k} d A
$$

$\int_{C_{a}} \vec{\nabla} \cdot d \vec{s}+\int_{c_{a}} \vec{F} \cdot d \vec{s}$ with the orientations given in protean. Therefor, it suffices to compar

$$
\int_{D} \nabla \times \vec{F} J \cdot \hat{k} d A
$$

$$
(D \times F) \cdot K=-y^{2}-x^{2}
$$

To compare the double intergralue use poler coordinates

$$
\begin{aligned}
\int_{D} \nabla \times \vec{F} \cdot k d A & =\int_{0}^{2 \pi} \int_{b}^{a}-r^{2} r d r d \theta \\
& =2 \pi\left(\frac{b^{4}}{4}-\frac{a^{4}}{4}\right)
\end{aligned}
$$

\#
Stoke's theorem states the,

$$
S_{3 M} \vec{F} \cdot d \vec{s}=\int_{M} \nabla \vec{F} \cdot d \vec{S}
$$

Let $\vec{F}=\vec{V} \times(x, y, z)$. The \vec{F} satisfies terequirenents of stake's theorem so we have

$$
\begin{aligned}
\int_{\partial M} \vec{V} \times(x, y, z) \cdot d \vec{S} & =\int_{M} \nabla x(\vec{V} x(x, y, z)) \cdot d \vec{S} \\
\vec{V}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \quad & \vec{V} \times(x, y, z) \\
= & (b z-c y,(x-a z, a y-b x) \\
\nabla \times(\vec{V} x(x, y, z) & =\left|\begin{array}{ccc}
i & j & \partial z \\
\partial x & \partial y & \partial z \\
b z-c y & c x-a z & a y-b x
\end{array}\right| \\
& 2(a, \quad b, C)=2 \vec{V} V
\end{aligned}
$$

\#5
a) WL begin by chection the divgine of \vec{F} :

$$
\begin{aligned}
& \vec{F}: \\
& \mathbb{\nabla}=\partial_{x}(y+z)+\partial_{y}(x+z)+\partial_{z}(x+y) \\
&=0
\end{aligned}
$$

Thase for, by dNegere theorem,

$$
\int_{\partial D} \vec{F} \cdot d \vec{S}=0
$$

b) In thus case $\nabla \cdot F=3$. Therefore by divgenee theorm

$$
\begin{aligned}
\int_{\partial D} \vec{F} \cdot d \vec{S} & =3 \int_{D} d V \\
& =3 \int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} p^{2} \sin \phi d p d \phi d \theta \\
& =3 \cdot 2 \pi \cdot \frac{1}{3} \cdot \frac{1}{2}=\pi
\end{aligned}
$$

\#6
We first compute D. \vec{F};

$$
\begin{aligned}
& \partial_{x}\left(x^{3} z+x^{2}\right)+\partial_{y}\left(-3 y x^{2} z+z^{3}\right) \\
&+\partial_{z}(-22 x) \\
&=3 x^{2} z+2 x-3 x^{2} z-2 x \\
&=0
\end{aligned}
$$

Therefore, it seems rassonable to try to oply the divergeren theorem. However, because M is not a closed surface, we add "caps" to th top and bottom, denoted as " T " all " B " respectively, so that th union of M, T, B is a closed sur face, (when we give T all Bouturad orreatator). Applying the divergina tHeorem gives

$$
\int_{M} \vec{F} \cdot d \vec{S}+\int_{T} \vec{F} \cdot d \vec{S}+\int_{B} \vec{F} \cdot d \vec{S}=0
$$

$$
\Rightarrow \int_{M} \vec{F} \cdot d \vec{S}=-\int_{T} \vec{F} \cdot d \vec{S}-\int_{B} \vec{F} \cdot d \vec{S}
$$

Therefore, we want to compute

$$
\int_{T} \vec{F} \cdot d \vec{S} \text { al } \int_{B} F \cdot d \vec{S}
$$

For B re have $d \vec{S}=-\vec{e}_{3} d S$:

$$
\int_{B}^{F} \cdot d \vec{S}=\int_{\{z=0\rangle \cap\left(x^{2}+y^{2} \leq 1\right\}} 2 z x d S=0
$$

For T we have $d \vec{S}=e_{3} d S$

$$
\begin{aligned}
S_{T} F \cdot d \vec{S}=\int_{\{z=2\} \Delta\left(x^{2}+y^{2} \leq 1\right.}-2 x z d S & =\int-4 x d S \\
& =\int_{0}^{2 \pi} \int_{0}^{1}-4 r^{2} \cos \theta d r d \theta \\
& =0 \quad \int_{0}^{2 \pi} \cos \theta d \theta=0
\end{aligned}
$$

Therefor $S_{M}^{F} \cdot d \vec{S}=0$
\#7 a) We vorte the vectorfield
\vec{F} as $\vec{F}_{A}+\vec{F}_{B}$ whare

$$
\begin{aligned}
& \vec{F}_{A}=A\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right) \\
& \vec{F}_{B}=B\left(\frac{-y}{(x-1)^{2}+y^{2}}, \frac{x-1}{(x-1)^{2}+y^{2}}\right)
\end{aligned}
$$

U.Wm: $\nabla \times \vec{F}_{A} \cdot \hat{K}=0 \quad(x, y) \neq(0,0)$

$$
\nabla \times \vec{F}_{B} \cdot \hat{K}=0 \quad(x, y) \neq(1,0)
$$

(I'll just do calculationfor F_{B} sine F_{A} hasalrody been dove in lecture 21).

$$
\begin{aligned}
& \nabla \times \vec{F}_{B} \cdot \hat{K}=\partial x\left(\frac{x-1}{(x-1)^{2}+x^{2}}\right)-\partial y\left(\frac{-y}{(x-1)^{2}+y^{2}}\right) \\
& =\frac{(x-1)^{2}+y^{2}-2(x-1)^{2}}{\left((x-1)^{2}+y^{2}\right)^{2}}+\frac{(x-1)^{2}+y^{2}-2 y^{2}}{\left((x-1)^{2}+y^{2}\right)^{2}}=0
\end{aligned}
$$

Therefore, for any closed contor C_{1} not containing $(0,0) \quad \int_{C_{1}} \vec{F}_{A} \cdot d \vec{S}=0$
alt Foray closed contr ϵ_{2} not contains $(1,0)$

$$
\int_{C_{Z}} \vec{F}_{B} d \vec{s}=0 \quad \text { by Green's theorem. }
$$

If a closed contour contains neither point tun

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{s} & =\int_{C} \vec{F}_{A} \cdot d \vec{s}+\int_{C} \vec{F}_{B} d \vec{s} \\
& =0+0=0
\end{aligned}
$$

b) In ordo to compute
$\int_{c} \vec{F} \cdot d \vec{s}$ with C given in the problems, frost observe that

$$
\begin{aligned}
S_{C} \vec{F} \cdot d \vec{s} & =\int_{C} \vec{F}_{A} \cdot d \vec{s}+\underbrace{\int_{C} \vec{F}_{B} \cdot d \vec{s}}_{=0 \text { by port a) }} \\
& =\int_{C} \vec{F}_{A} \cdot d \vec{s}
\end{aligned}
$$

Therefore, it suffices to compute $\int_{C} \vec{F}_{A} \cdot d \vec{s}$. we follow the sam procedure outbreed in lecture 20 Where ne frost assam C is a circle of radius $a<1$ (so docesn't include (1.0)) centered at the origin. For this contour, ne can directly compute fut

$$
\int_{c_{a}} \vec{F}_{A} \cdot d \vec{S}=2 \pi A
$$

circle radius a with courtselockinse peranetrizatio

Now suppose C is a genral loselcur containg $(0,0)$ but rot cortaray $(1,0)$.
Since a car be chosea arbstracily srell, we may assare tht the circula contor sits inside of C.

$$
\begin{aligned}
& \int_{C} \vec{F}_{A} \cdot d \vec{s}+\int_{\substack{-C_{a} \\
\text { clockurse }}} \vec{F}_{A} \cdot d \vec{s}=0 \\
& \begin{array}{c}
\text { clockineseration } \\
\text { parameterian }
\end{array} \\
& \Rightarrow \int_{C} \vec{F}_{A} \cdot d \vec{s}=-\int_{C_{a}} F_{A} \cdot d \vec{\xi} \\
& =2 \pi A
\end{aligned}
$$

c) Ideatical to 6) except switchy bles of $\left((0,0), \vec{F}_{\pi}\right)$ al $\left((1,0), \vec{F}_{B}\right)$. Anserecris $2 \pi B_{0}$
D) Following the dden from b), C) we first aralyze a simple case. Corsidr ta rectaynu contar R drewn below.

we can view R as the sumof tho other contores R_{A} al R_{B} as follows.

The reason the works is because where R_{A} all R_{B} stere a side, they have opposite orientations. Therefor

$$
\begin{aligned}
\int_{R} \vec{F} \cdot d \vec{s} & =\int_{R_{A}} \vec{F} \text { odls}+\int_{R_{B}} \vec{F} \cdot d \vec{s} \\
& =2 \pi A+2 \pi B_{0}
\end{aligned}
$$

For a general contour, we can use Green's theorem as in put 6) to justify tut

$$
\int_{C} \vec{F} \cdot d \vec{s}=\int_{R} \vec{F} \cdot d \vec{s}
$$

Therefor $\int_{C} \vec{F} \cdot d \vec{S}=2 \pi(A+B)$

Bonus paboleas
Frost, note tret
$2 \pi l(\gamma) \bar{X}$ car be simplified to

$$
\begin{aligned}
2 \pi l(\gamma) \frac{1}{\gamma(\gamma)} \int_{\gamma(t)} x d s & =2 \pi \int_{\gamma(7)} x d s \\
& =2 \pi \int_{I_{1}} \gamma_{1}(t)\left\|\gamma^{\prime}(t)\right\| d t
\end{aligned}
$$

withths goal, we aim to compute the area of th surface of revolution by vising th formula

$$
A=\int_{D} \| \vec{N}(s, t) \backslash d s d t \text { when } \vec{N}=\partial_{s} X \times \partial_{t} X
$$ and X is a parametunat for the surface of revolution.

we fid X by rotating the parameteriation $\left(\begin{array}{c}\gamma_{1}(t) \\ \gamma_{2}(t) \\ 0\end{array}\right)$ arout yaxis which is given by ta matrix

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\cos s & 0 & -\sin s \\
0 & 1 & 0 \\
\operatorname{sins} & 0 & \cos s
\end{array}\right) \quad S \in[0,2 \pi] \\
& X(s, t)=\left(\begin{array}{ccc}
\cos s & 0 & -\sin s \\
0 & 1 & 0 \\
\operatorname{sins} & 0 & \cos s
\end{array}\right)\left(\begin{array}{c}
\gamma_{1}(t) \\
\gamma_{2}(t) \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
\cos 5 \gamma_{1}(t) \\
\gamma_{2}(t) \\
\sin s \gamma_{1}(t)
\end{array}\right) \\
& \partial_{s} X(s, \iota)=\left(\begin{array}{c}
-\sin s \gamma_{1}(t) \\
0 \\
\cos s \gamma_{1}(t)
\end{array}\right) \\
& \partial_{\in} X(s, t)=\left(\begin{array}{c}
\cos \gamma_{1}^{\prime}(\mathbb{)} \\
\gamma_{n^{\prime}}^{\prime}(t) \\
\operatorname{sins} \gamma_{1}^{\prime}(t)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
N(s, t) & =\left|\begin{array}{ccc}
i & j & k \\
-\sin s \gamma_{1}(t) & 0 & \cos s \gamma_{(}(t) \\
\cos s \gamma_{1}^{\prime}(t) & \gamma_{2}^{\prime}(t) & \sin s \gamma_{1}^{\prime}(t)
\end{array}\right| \\
& =\left(\gamma_{1}(t) \gamma_{2}^{\prime}(t) \cos s, \quad \gamma_{1}^{\prime} \gamma_{1},-\sin s \gamma_{1} \gamma_{2}^{\prime}\right) \\
\|N(s, t)\| & =\sqrt{\left(\gamma_{1} \gamma_{2}^{\prime}\right)^{2}+\left(\gamma_{1} \gamma_{1}^{\prime}\right)^{2}} \\
& =\gamma_{(t)} \sqrt{\left(\gamma_{1}(t)\right)^{\prime}+\left(\gamma_{2}^{\prime}(t)\right)^{2}}=\gamma_{(}(t)\left\|\gamma^{\prime}(t)\right\|
\end{aligned}
$$

Therafore,

$$
\begin{aligned}
\left.\int_{D} \| N^{\prime}(s, t)\right) \| d s d t & =\int_{0}^{2 \pi} \int_{I} \gamma(t)\left\|\gamma^{\prime}(t)\right\| d s d t \\
& =2 \pi \int_{I} \gamma(t)\left\|\gamma^{\prime}(t)\right\| d t
\end{aligned}
$$

whech agres with tudesind resilt.

