Chapter 1: Vectors
You have seen most of this already in linear algebra!
1.6 - Some n-dimensional Geometry

Be sure to review the linear algebra material that is most of this section!

Thai: (Triangle inequality) For all $\vec{a}, \vec{b} \in \mathbb{R}^{n}$,

$$
\|\vec{a}+\vec{b}\| \leqslant\|\vec{a}\|+\|t\|
$$

The:

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
b_{1} & \cdots & b_{n} \\
a_{n}
\end{array}\right), \quad \vec{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \text { Then } \\
& A \vec{x}=x_{1} \vec{a}_{1}+\ldots+x_{n} \vec{a}_{n}
\end{aligned}
$$

So: A matrix-vector product is:
a linear combination of the columns of the matrix, using the vector as the coefficients.

Def:- A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear iff for all $a, b \in \mathbb{R}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$, we have
(1) $T(a \vec{v}+b \vec{w})=a T(\vec{v})+b T(\vec{w})$
$\left(\begin{array}{ll}\text { Equiv: } & \text { (2) } T(a \vec{v})=a T(\vec{v}) \text { and } T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{v}) \\ \text { Equiv: (3) } T\left(\vec{c}_{1}+\ldots+c_{n} \vec{v}_{n}\right)=c_{1} T\left(\vec{v}_{1}\right)+\ldots+c_{n} T\left(\vec{v}_{n}\right)\end{array}\right)$
Such a function is sometimes called a "linear transformation".
Exi) Given $\vec{a} \in \mathbb{R}^{n}$ and $P(\vec{x})=\vec{a} \cdot \vec{x}, P$ is linear.
Exi) Given $\vec{a} \in \mathbb{R}^{n}$ and $C(\vec{x})=\vec{a} \times \vec{x}, C$ is linear.
Ex:) Given $\vec{r}_{1}, \ldots, \vec{r}_{n-1} \in \mathbb{R}^{n}$, then D (below) is linear.

$$
D(\vec{x})=\operatorname{det}\left(\begin{array}{c}
\overrightarrow{r_{1}} \\
\vdots \\
\frac{\overrightarrow{r_{n-1}}}{\vec{x}}
\end{array}\right)
$$

Thm: $\left(T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right.$ is a linear transformation)
$(\exists$ a matrix A with $T(\vec{x})=A \vec{x}$ for all \vec{x}.)
Pf: (\Uparrow) Direct computation.
$(\|)$ Let $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$. Then by linearity we have

$$
\begin{aligned}
T(\vec{x}) & =T\left(x_{1} \vec{e}_{1}+\ldots+x_{n} \vec{e}_{n}\right) \\
& =x_{1} T\left(\vec{e}_{1}\right)+\ldots x_{n} T\left(\vec{e}_{n}\right)
\end{aligned}
$$

We can then choose $\vec{a}_{i}=T\left(\vec{e}_{i}\right)$ and

$$
A=\left(\begin{array}{lll}
\phi_{1} & \cdots & \vec{q}_{n}
\end{array}\right)=\left(\begin{array}{lll}
T\left(\phi_{1}\right) & \cdots & T\left(\phi_{\phi_{n}}\right)
\end{array}\right)
$$

and then rewrite as

$$
\begin{aligned}
T(\vec{x}) & =x_{1} T\left(\vec{e}_{1}\right)+\ldots+x_{n} T\left(\vec{e}_{n}\right) \\
& =x_{1} \vec{a}_{1}+\ldots+x_{n} \vec{a}_{n}=A \vec{x}
\end{aligned}
$$

Thmil Matrix multiplication corresponds to composition of linear transformations. That is,

$$
S(\vec{x})=A \vec{x}, T(\vec{x})=B \vec{x} \quad \Longrightarrow(S \circ T)(\vec{x})=(A B) \vec{x}
$$

1.1 - Vectors in Two and Three Dimensions

The book uses bold ("v") to indicate a vector.
I use a vector hat $\left(" V^{\prime}\right)$ because it is easier to write!

The book represents this vector as " $\vec{P}_{1} P_{2}$ ".
I prefer to write it as " $\vec{P}_{2}-\vec{P}_{1}$ ".

- shows the implicit algebra!

- recall natural correspondence between points of vectors!
1.2 - More About Vectors

A "parametrization" gives position as a function of a single parameter (say, t). If you think of t as time, then the parametrization "draws" the "parametric curve".
Exit. $\vec{x}(t)=\binom{x(t)}{y(t)}=\binom{\cos t}{\sin t}$. always on $x^{2}+y^{2}=1$.

Exi. $\vec{x}(t)=(t-1,3 t+4)$.
(1)

$$
\begin{aligned}
t=x+1 & \Rightarrow y=3 t+4=3(x+1)+4 \\
& \Rightarrow y=3 x+7
\end{aligned}
$$

Do we see a relationship between $x=t-1$ and $y=3 t+4$?
(2)

$$
\begin{aligned}
x & =t-1 \\
3 x & =3 t-3 \\
3 x+7 & =3 t+4=y \Rightarrow y=3 x+7
\end{aligned}
$$

Exit

$$
\vec{x}(t)=\left(\begin{array}{c}
\cos t \\
\sin t \\
t
\end{array}\right)
$$

Curve in \mathbb{R}^{3}, but an equation would be a surface!

Obs: (1) projection to $x y$-plane is moving in a circle.
(2) projection to z-axis is moving upward.
Combining these, we see we have a helix.

What if you know the curve and want to "parametrize"?
Graph parametrization: If you have a graph $y=f(x)$, let t be the input variable!
Exi) We can parametrize $y=x^{2}$ with $\vec{x}(t)=\binom{x}{y}=\binom{t}{t^{2}}$.

Ex.) What if $x e^{y^{2}}+3 y=2$?
Write as $x=e^{-y^{2}}(2-3 y)$! Then

$$
\binom{x}{y}=\binom{e^{-t^{2}}(2-3 t)}{t}
$$

Or, try using vectors...
Exi) Wheel of radius a rolling to the right:

$$
\vec{P}=\vec{A}+d
$$

$$
\begin{aligned}
& \text { Rubber = Road! } \\
& \Rightarrow \vec{A}=\binom{a t}{a}
\end{aligned}
$$

$$
\begin{aligned}
\theta & =\frac{3 \pi}{2}-t, \quad d=\binom{a \cos \theta}{a \sin \theta} \\
& \Rightarrow d=\binom{-a \sin t}{-a \cos t} \\
\text { So } \quad \vec{P} & =\binom{a t}{a}+\binom{-a \sin t}{-a \cos t}
\end{aligned}
$$

Ex:) Say we have a line through \vec{x}_{0} parallel to \vec{V}...

Then $\vec{x}=\vec{x}_{0}+t \vec{v}$ draws the line.

Or you can deform an existing parametrization.
Ex:) Parametrize the ellipse with equation $\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1$. $\binom{\cos t}{\sin t}$ makes the circle C.
Stretch C by

- $x 3$ in the x-direction
- $x 2$ in the y-direction

$\Longrightarrow E$ is parametrized by $\binom{3 \cos t}{2 \sin t}$.

Notice that a parametrization is a "point generator":

$$
t \leadsto \text { param. } \longrightarrow \begin{gathered}
(x, y) \text { on } \\
\text { the curve }
\end{gathered}
$$

But an equation is a "point tester" :

$$
\underset{\text { on the curve? })}{(x, y)} \xrightarrow{\longrightarrow} \xrightarrow[\substack{\text { Yes } \\ \text { no } \\ \text { no }}]{ } \rightarrow \substack{\text { es } \\ \hline}
$$

Ex:) What point (s) on $\vec{x}(t)=\left(t^{2}-1, t+1, t^{2}+t\right)$ are on the plane with equation $2 x+y-z=0$?
Strategy: Test the generated point!
$t \xrightarrow{\text { pram }}$

$$
\begin{aligned}
& x=t^{2}-1 \\
& y=t+1 \\
& z=t^{2}+t
\end{aligned} \xrightarrow{2 x+y-z=0} 2\left(t^{2}-1\right)+(t+1)-\left(t^{2}+t\right) \stackrel{?}{=} 0
$$

Reminder: The "point tester" for a line in \mathbb{R}^{3} is the "symmetric equations":

$$
\exists t)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)+t\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

It) $\quad t=\frac{x-x_{0}}{a} \quad t=\frac{y-y_{0}}{b} \quad t=\frac{z-z_{0}}{c}$

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

1.3 -The Dot Product

Recall from linear algebra:

$$
\vec{\mu} \cdot \vec{v}=\mu_{1} v_{1}+\ldots+\mu_{n} v_{n}
$$

Review the many properties in the book!
Recall also, this is the "model" for the idea of inner products.

NB: The book uses "perpendicular" and "orthogonal" interchangeably.
Iprefer to use

- "perpendicular" as a geometric idea (nonzero vectors only!),
- "orthogonal" as an algebraic idea (whenever $\vec{\mu} \cdot \vec{v}=0$).

Thu) For any $\vec{V} \neq \overrightarrow{0}$, the unique unit vector pointing in the same direction as \vec{V} is

$$
\vec{\mu}=\frac{\vec{v}}{\|\vec{v}\|}
$$

The component of \vec{W} in the direction of \vec{V} is as pictured below.

Trig then gives us

$$
\begin{aligned}
\cos \theta=\frac{\operatorname{comp}_{\vec{v}}(\vec{w})}{\|\vec{w}\|} \Longrightarrow \operatorname{comp}_{\vec{v}}(\vec{w}) & =\|\vec{w}\| \cos \theta \\
& =\frac{\|\vec{v}\|\|\vec{w}\| \cos \theta}{\|\vec{v}\|} \\
& =\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|}
\end{aligned}
$$

Better, with $\vec{\mu}=\vec{V} /\|\vec{v}\|$, we can write

$$
\operatorname{comp}_{\vec{v}}(\vec{w})=\vec{w} \cdot \vec{\mu}
$$

Components are dot products with unit vectors.

The projection of \vec{w} onto \vec{v} is the vector in the \vec{V}-direction in the amount of comps (\vec{w}), as shown.

So we can compute it as :

$$
\begin{aligned}
\operatorname{proj}_{\vec{v}}(\vec{w}) & =\operatorname{comp} p_{v}(\vec{w}) \vec{\mu} \\
& =(\vec{w} \cdot \vec{\mu}) \vec{\mu}
\end{aligned}
$$

(The book writes this instead as

$$
\begin{aligned}
\operatorname{proj}_{\vec{v}}(\vec{w}) & =(\vec{w} \cdot \vec{\mu}) \vec{\mu} \\
& \left.=\left(\vec{w} \cdot \frac{\vec{v}}{\|\vec{v}\|}\right) \vec{v}\right) \\
& \left.=\frac{\vec{w} \cdot \vec{v} \|}{\|\vec{v}\|^{2}} \vec{v}=\frac{\vec{w} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right)
\end{aligned}
$$

Vector algebra can help with proofs in plane geometry. See two nice examples in the book.
1.4 - The Cross Product

Geometric order of a list
An ordered list (\vec{a}, t) of 2 vectors in \mathbb{R}^{2} is either: counter clock wise

(linearly)dependent

Some properties:
(1) ccw and cw are "mirror images".

$$
(\vec{a}, b) c c w \Longleftrightarrow\left(\vec{a}, b^{\prime}\right) c w
$$

(2) "Trading" positions in the list changes order.

(3) Order is independent of rotations.

An ordered list $(\vec{a}, \vec{b}, \vec{c})$ of 3 vectors in \mathbb{R}^{3} is either:

Some properties:
(1) Right handed and left handed are "mirror images".
$(\vec{a}, \vec{b}, \vec{c})$ RHO \Uparrow $\left(\vec{a}^{\prime}, b^{\prime}, \vec{c}^{\prime}\right)$ LH

(2) Trading positions of 2 vectors in the list changes the order.

$$
(\vec{a}, b, \vec{c}) R H O
$$

$$
(b, \vec{a}, \vec{c}) L H O
$$

(3) Order is independent of rotations.

$$
(\bar{a}, \vec{b}, \vec{c}) \text { RHO } \Longleftrightarrow(R(\vec{a}), R((b), R((\bar{c})) R H O
$$

$$
R(\vec{c}) \underset{\longrightarrow}{\longrightarrow} R((\vec{a})
$$

(4) "Cycling" a list preserves order.

Two theorems you may have seen in linear algebra:
Thu il From a list (\vec{a}, t) in \mathbb{R}^{2} we make a matrix A, the linear transformation $T(\vec{x})=A \vec{x}$, and the parallelogram $P=T(S)$ with edge vectors \vec{a} and \vec{b}.

$$
A=\left(\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right) \xrightarrow[x]{y_{x}} \xrightarrow{T} \xrightarrow{y_{x}} \xrightarrow{t_{1}}
$$

Then:
(1) $|\operatorname{det} A|=$ area of P
(2) sign of $\operatorname{det} A$ indicates order of (\vec{a}, \vec{b}) and whether T "inverts" the plane:
$\operatorname{det} A>0:(\vec{a}, \vec{b}) c c w$, plane not inverted, all orders preserved.
$\operatorname{det} A<0:(\vec{a}, \vec{b}) c w$, plane is inverted, all orders reverse.
$\operatorname{det} A=0:(\vec{a}, t)$ dependant, plane is squished.

Thmi From a list $(\vec{a}, \vec{b}, \vec{c})$ in \mathbb{R}^{3} we make a matrix A, the linear transformation $T(\vec{x})=A \vec{x}$, and the parallelepiped $P=T(S)$ with edge vectors $\vec{a}, \vec{b}, \vec{c}$.

$$
A=\left(\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right)
$$

Then:
(1) $|\operatorname{det} A|=$ volume of P
(2) sign of $\operatorname{det} A$ indicates order of $(\vec{a}, \vec{b}, \vec{c})$ and whether T "inverts" \mathbb{R}^{3} :
$\operatorname{det} A>0:(\vec{a}, \vec{b}, \vec{c})$ RHO, \mathbb{R}^{3} not inverted, all orders preserved.
$\operatorname{det} A<0 ;(\vec{a}, \vec{b}, \vec{c}) L H O, \mathbb{R}^{3}$ is inverted, all orders reverse.
$\operatorname{det} A=0:(\vec{a}, \vec{b}, \vec{c})$ dependent, \mathbb{R}^{3} is squished.
(What follows is different from the book - but equivalent.)
Defi. The cross product $\vec{a} \times \vec{b}$ of two vectors in \mathbb{R}^{3} is

$$
\vec{a} \times \vec{b}=\left(\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
-\left(a_{1} b_{3}-a_{3} b_{1}\right) \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{a}_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) \text { (symbolic!) }
$$

Notice that

$$
\vec{c} \cdot(\vec{a} \times \vec{b})=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \cdot\left(\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
-\left(a_{1} b_{3}-a_{3} b_{1}\right) \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right)
$$

This "triple product" formula is a powerful connection between dot product and determinant (which we understand), and cross product (which we dort yet).
Thai: $\vec{a} \times \vec{b}$ is \perp to both \vec{a} and \vec{b}.
Pf: Compute $\vec{a} \cdot(\vec{a} \times \vec{b})$ and $\vec{b} \cdot(\vec{a} \times b)$ directly.
Using the triple product for example:

$$
\vec{a} \cdot(\vec{a} \times \vec{b})=\operatorname{det}\left(\frac{\vec{a}}{\vec{a}}\left(\frac{\vec{b}}{\vec{a}}\right)=0 .\right.
$$

Thmi) $\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})=\vec{c} \cdot(\vec{a} \times \vec{b})$
Pf: The three determinants are equal by transpositions.
Or - magnitudes computed as volume of the same paralleled ped, signs equal because the lists have the same handedness.

Thu: $\|\vec{a} \times \vec{b}\|=\operatorname{area}(\|(\vec{a}, \vec{b}))$
Pf:) Consider

$$
\begin{aligned}
(1) & =\text { triple product }=(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{b})=\|\vec{a} \times \vec{b}\|^{2} \\
(2) & =\text { volume }(\|(\vec{a} \times b, \vec{a}, \vec{b})) \\
& =(\|\vec{a} \times b\|)(\text { area }(\|(\vec{a}, b)))
\end{aligned}
$$

Cancelling the common factor gives the result.

Thai: $\vec{a} \times \vec{b}=\overrightarrow{0} \Longleftrightarrow(\vec{a}, \vec{b})$ is linearly dependent Pf: Both correspond to $\operatorname{area}(\|(a, b))=0$.

Thmi) $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$ is never in left hand order.
Pf:)
$\operatorname{det}\left(\frac{\frac{\vec{a} \times b}{a}}{\frac{\vec{a}}{a}}\right)=\|\vec{a} \times \vec{b}\|^{2}$ is never negative, so $(\vec{a} \times \vec{b}, \vec{a}, \vec{b})$ is never left hand order. By "cycling" we get the result.

We now have a purely geometric description of the cross product $\vec{a} \times \vec{b}$, as the unique vector with
(1) $\vec{a} \times \vec{b} \perp \vec{a}, \vec{b}$
(2) $\|\vec{a} \times \vec{b}\|=\operatorname{area}(\|(\vec{a}, \vec{b}))$
(3) $\vec{a}, \vec{b}, \vec{a} t \vec{b}$ is not left handed.
(The book uses this as the definition.)
Thu: $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
Pf:) Same magnitude, area $(\|(\bar{a}, b))$. If not zero, then they point in opposite directions by handed ness.

NB also:
(1) $T(\vec{x})=\vec{a} \times \vec{x}$ is linear (and likewise if you switch the order).

That is:

$$
\vec{a} \times\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right)=c_{1}\left(\vec{a} \times \vec{x}_{1}\right)+c_{2}\left(\vec{a} \times \vec{x}_{2}\right)
$$

Similarly $T(\vec{x})=\vec{x} \times \vec{a}$ is linear:

$$
\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right) \times \vec{a}=c_{1}\left(\vec{x}_{1} \times \vec{a}\right)+c_{2}\left(\vec{x}_{2} \times \vec{a}\right)
$$

(2) Cross product is not associative.

$$
\vec{a} \times(\vec{b} \times \vec{c}) \neq(\vec{a} \times \vec{b}) \times \vec{c}
$$

Applications
Torque: is a measure of how hard you are turning something around an axis.

Movement through a magnetic field:
A particle of charge of moving through a magnetic field \vec{B} with velocity \vec{V} experiences a force

$$
\vec{F}=q \vec{V} \times B
$$

1.5- Equations for Planes, Distance Problems

Suppose we know about a plane P:
(1) $P \perp \vec{n}$
(2) $P_{\ni} \vec{x}_{0}$

Then from geometry we see that

$$
\begin{aligned}
\vec{x} \in P & \Leftrightarrow \vec{x}-\vec{x}_{0} \| p \\
& \Leftrightarrow\left(\vec{x}-\vec{x}_{0}\right) \cdot \vec{n}=0
\end{aligned}
$$

So a general equation for such a plane P is

$$
\vec{n} \cdot \vec{x}=\vec{n} \cdot \vec{x}_{0}
$$

Writing this as

$$
a x+b y+c z=d
$$

note that the coefficients a, b, c are the components of $\vec{n}=(a, b, c)$.

Ex:i Find the equation of the plane containing $\vec{a}=(1,0,2), \vec{b}=(3,2,4), \vec{c}=(1,2,3)$.
Note that $\vec{b}-\vec{a}, \vec{c}-\vec{a} \| P$.

So we can use $\vec{n}=(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})$, and let \vec{x}_{0} be either \vec{a}, \vec{b}, or \vec{c}.

Exi) If there are no y^{\prime} 's in the equation for a plame P, then P is parallel to the y-axis. Why?

$$
\begin{aligned}
& a x+o y+c z=d \\
& \quad \Longrightarrow \vec{n}=(a, o, c) \\
& \quad \Longrightarrow \vec{n} \frac{1}{y-a x i s} \\
& \quad \Longrightarrow p \| y \text {-axis }
\end{aligned}
$$

Exi] Parametrize the line L through $\vec{a}=(1,2,3)$ that is parallel to both $x+y=3$ and $x-3 y+z=0$.
L is \perp to both normals $\vec{n}_{1}=(1,1,0), \vec{n}_{2}=(1,-3,1)$.
So $\vec{v}=\vec{n}_{1} \times \vec{n}_{2}$ is $\|$ to L.
Then $L=\{\vec{a}+t \vec{v}\}$.

Warning: Always think through carefully any "transitivity" arguments about perpendicular / parallel...
$\mathbb{E x}_{x}: \vec{V} \| P$ and $P \| \vec{\omega}$ … but $\vec{V} \nmid \vec{W}$!

Exi) $P \perp Q, Q \perp R$ … but $P \not \not R$!

How can we parametrize ("point generator") a plane? We need two parameters:

$$
\vec{x}=\vec{a}+s \vec{v}+t \vec{w}
$$

generates the plane through \vec{a} parallel to \vec{v}, \vec{w}.

Exit Find a parametrization of the plane containing $\vec{a}=(1,0,2), \vec{b}=(3,2,4), \vec{c}=(1,2,3)$.
Again we have

$$
\vec{b}-\vec{a}, \vec{c}-\vec{a} \| P
$$

So we can parametrize by

$$
\vec{x}=\vec{a}+5(\vec{b}-\vec{a})+t(\vec{c}-\vec{a})
$$

Distance problems:
From a point to a line:
(1) Use projections:

(2) Use area and cross products:

(d) $\|\vec{p}\|=$ area $=\|\vec{p} \times \vec{w}\|$

Between parallel planes: Use components in the \vec{n} direction.

Between skew lines: identify parallel planes containing them.

$$
\vec{v}_{2}-y_{2}
$$

1.7 -New Coordinate Systems

The "usual" coordinate system is "rectangular coordinates".
(1) Unique:

$$
\{\text { coors } x, y\} \longleftrightarrow\left\{\text { points in } \mathbb{R}^{2}\right\}
$$

(2) Agebraically convenient:

$$
(x, y)=x \vec{e}_{1}+4 \vec{e}_{2} \quad ; \quad a\binom{x_{1}}{y_{1}}+b\binom{x_{2}}{y_{2}}=\binom{a x_{1}+b x_{2}}{a y_{1}+b y_{2}} ; \ldots
$$

None of these hold for the following coordinate systems!
Polar Coordinates
Think of r, θ as the inputs to a function

θ : defines a direction from the origin.
r : defines "how far" in that direction (if $r<0$, just go backward!)
The function is given by

$$
g(r, \theta)=(r \cos \theta, r \sin \theta)=(x, y)
$$

Not unique!

(these are all "polar coordinates" of this same point
$N B$, very often (our textbook too!) polar coordinates are given as an ordered pair, with no specific indication of being polar.
Ex.) Where is $(2, \pi / 6)$?

Clarify if feasible! Egg., $(r, \theta)=(2, \pi / 6)$.
Converting back: Use $r^{2}=x^{2}+y^{2}, \tan \theta=y / x$, and geometry. Cannot solve these in general for r, θ !

$$
\begin{aligned}
& \text { Exi) }(x, y)=(-1,-1) \quad\left(\Longrightarrow r^{2}=2, \tan \theta=1\right) \text { y } \uparrow \\
& \Rightarrow r=\sqrt{2} \quad \text { or }-\sqrt{2} \\
& \theta=\frac{\pi}{4}+2 \pi n \text { or } \frac{5 \pi}{4}+2 \pi n \\
& \text { But } N B,(r, \theta)=(\sqrt{2}, \pi / 4) \text { is wrong! }
\end{aligned}
$$

Equations in polar coordinates
Exi) $r=3$

$$
\Rightarrow r^{2}=9 \Rightarrow x^{2}+y^{2}=9
$$

Exi) $\theta=\pi / 3$

$$
\Rightarrow \tan \theta=\sqrt{3} \Rightarrow \frac{4}{x}=\sqrt{3}
$$

Exi) $r=\sin 2 \theta$
Consider over ranges of angles.
(1) $\theta \in[0, \pi / 2]$:

(2) $\theta \in[\pi / 2, \pi]$

Exi. $r=\cos \theta$

$$
\begin{aligned}
& \Rightarrow r^{2}=r \cos \theta \Rightarrow x^{2}+y^{2}=x \\
& \Rightarrow\left(x^{2}-x+\frac{1}{4}\right)+y^{2}=\frac{1}{4} \\
& \Rightarrow\left(x-\frac{1}{2}\right)^{2}+y^{2}=\left(\frac{1}{2}\right)^{2}
\end{aligned}
$$

Exi)

$$
\begin{aligned}
& x^{2}+(y-1)^{2}=1 \\
& x^{2}+y^{2}-2 y+1=1 \\
& r^{2}-2(r \sin \theta)=0
\end{aligned} \xrightarrow[r=2 \sin \theta]{ } x(\text { or } r=0)
$$

Cylindrical coordinates
Polar coordinates for the xy-projection; leave the z.
 rect cords (x, y, z)
cyl. cords (Γ, θ, z)

$$
\begin{array}{ll}
x=r \cos \theta & x^{2}+y^{2}=r^{2} \\
y=r \sin \theta & \tan \theta=4 / x
\end{array}
$$

Exil $r=c$ is always a cylinder. (Thus the name!)
Ex: Spheres $x^{2}+y^{2}+z^{2}=c^{2}$ have cylindrical equations

$$
r^{2}+z^{2}=c^{2}
$$

Ex: $z=k r$ is a cone.

NB -be careful using " r " as a radius (of a given circle, sphere, cylinder, ...). Confusion of variables!

Spherical coordinates

θ : defines a half plane "hinged" on the z-axis.
$\phi($ phi ("fee")): defines an angle from the $+z$-axis toward the θ half plane (or, away if $\phi<0$).
sph. cords (e, ϕ, θ)) (rho ("row")): defines" how far" in that direction (if $P<0$, backward!)

$$
\left.\Rightarrow \begin{array}{rl}
x & =(\rho \sin \phi) \cos \theta \\
r=\rho \sin \phi \\
z=\rho \cos \phi
\end{array} \Rightarrow \begin{array}{l}
y \\
z \\
z
\end{array}=\rho \sin \phi\right) \cos \phi \quad \$
$$

Exi $x^{2}+y^{2}+z^{2}=e^{2}$, so $p=c$ is always a sphere centered at the origin. (Thus the name!)
Exi) There are two ways to write $\vec{p} \in \mathbb{R}^{2}$ in polar cords, and four ways to write $\vec{p} \in \mathbb{R}^{3}$ in spherical coords! Consider $\vec{p}=(1, \sqrt{3}, 2)$:

$$
\theta=\frac{\pi}{3} \text { or } \frac{\pi}{3}+\pi
$$

For each, 2 options for ϕ !

Spherical angles relate to east longitude (ε) and north latitude (η):

$$
\begin{aligned}
\theta= & \varepsilon \\
\phi= & \frac{\pi}{2}-\eta \\
P= & \text { radius of earth } \\
& (\sim 3960 \text { mi. })
\end{aligned}
$$

Given two locations on earth, what is the distance S ?

$$
\begin{gathered}
\varepsilon, \eta \rightarrow \rho, \phi, \theta \rightarrow x, y, z \\
\vec{x}_{1} \cdot \vec{x}_{2}=R^{2} \cos \alpha \\
S=R \alpha
\end{gathered}
$$

Again, can use coordinate relationships to convert equations.
Ex) $(x-1)^{2}+y^{2}+z^{2}=1$

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}-2 x+1 & =1 \\
p^{2}-2(p \sin \phi \cos \theta) & =0 \quad
\end{aligned} \quad \Longrightarrow \quad \rho=2 \sin \phi \cos \theta
$$

Standard basis vectors
In rectangular coordinates we have

$$
\begin{aligned}
& \vec{e}_{1}=\vec{\imath}=(1,0,0) \\
& \vec{e}_{2}=\vec{J}=(0,1,0) \\
& \vec{e}_{3}=\vec{k}=(0,0,1)
\end{aligned}
$$

Their most important feature (linear combinations!) does not translate well to other coordinate systems.
Also though, they are unit vectors pointing in the direction of increasing a single coordinate.
Similarly then:
Polar:

Cylindrical:

$$
\begin{aligned}
& \vec{e}_{z}=\vec{e}_{3} \\
& \vec{e}_{\rho}=\frac{(x, y, z)}{\rho} \\
& \vec{e}_{\theta}=\frac{(-y, x, 0)}{r} \\
& \vec{e}_{\phi}=\vec{e}_{\theta} \times \vec{e}_{\rho}
\end{aligned}
$$

NB:

- They are not constants!
- They don't work with linear combinations like the rectangular ones do. Eng.:
\vec{x} has rectangular

$$
\text { coords } x, y, z
$$

$$
\Longleftrightarrow \vec{x}=x \vec{e}_{1}+y \vec{e}_{2}+z \vec{e}_{3}
$$

but
\vec{x} has spherical words e, ϕ, θ

$$
\Longleftrightarrow \Longrightarrow \vec{x}=p \vec{e}_{p}+\phi \vec{e}_{p}+\theta \vec{e}_{\theta}
$$

- They happen to be orthogonal for each of these coordinate systems.

