EXAM 1 SOLUTIONS
You have 2 hours.
No notes, no books.
YOU MUST SHOW ALL WORK TO RECEIVE CREDIT
Good luck!

Name ________________________________

1. ___________ (/10 points)

2. ___________ (/15 points)

3. ___________ (/15 points)

4. ___________ (/15 points)

5. ___________ (/15 points)

6. ___________ (/15 points)

7. ___________ (/15 points)

Bonus: ___________ (/10 points)

Total ___________ (/100 points)
1. Simplify the following (Hint – the answer is an integer):

\[\log_2(3^2) \log_3(4^2) \cdots \log_7(8^2) \]

Solution:

Using the laws of logarithms, we rewrite this first as

\[2 \log_2(3) 2 \log_3(4) \cdots 2 \log_7(8) \]

and then as

\[2^6 \frac{\ln 3 \ln 4}{\ln 2 \ln 3} \cdots \frac{\ln 8}{\ln 7} \]

There is much cancellation, leaving only

\[\frac{2^6 \ln 8}{\ln 2} = 2^6 \log_2 8 = 2^6 \cdot 3 = 192 \]
2. Use the $\epsilon - \delta$ definition of a limit to prove that

$$\lim_{x \to 0} x^5 = 0$$

Solution:

Thinking: We know that, starting from an inequality of the form $0 < |x - 0| < \delta$, we will eventually need to conclude that

$$|x^5 - 0| < \epsilon$$

Of course this is equivalent to $|x| < \epsilon^{1/5}$; which suggests to us that our choice of δ should be $\delta = \epsilon^{1/5}$.

We are now ready to begin our proof.

Proof:

Let $\epsilon > 0$ be given, and choose $\delta = \epsilon^{1/5}$. The reasoning below shows that this choice satisfies the required condition:

Assume $0 < |x - 0| < \delta$. Then $|x| < \epsilon^{1/5}$, which implies $|x^5| < \epsilon$, or $|x^5 - 0| < \epsilon$, which means that $|f(x) - L| < \epsilon$.

So the chosen δ satisfies the required condition, and thus 0 is the limit.
3. Find the following limits, using any methods we have discussed in class. (You must justify your results!)

a) \[\lim_{x \to 2} x^2 e^{x^2+1} \]

Solution:
We know that \(x^2 + 1 \) is continuous since it is a polynomial, and \(e^x \) is continuous since it is an exponential. Therefore, by the continuity theorems, we know that their composition \(e^{x^2+1} \) is continuous. Furthermore, \(x^2 \) is continuous since it is a polynomial. So we conclude that the product \(x^2 e^{x^2+1} \) is continuous, which allows us to conclude that

\[\lim_{x \to 2} x^2 e^{x^2+1} = 2^2 e^{2^2+1} = 4 e^5 \]

b) \[\lim_{x \to 0} x^3 \cos \left(\frac{\pi}{x} \right) \sin(x^2) \]

Solution:
This function is not continuous at \(x = 0 \), because in particular, it is not defined there. We use the Squeeze Theorem, as follows:

Note that \(-1 < \cos \left(\frac{\pi}{x} \right) \) and \(-1 < \sin(x^2) < 1 \); therefore, we also have that \(-1 < \cos \left(\frac{\pi}{x} \right) \sin(x^2) < 1 \). Multiplying this inequality by \(x^3 \) gives us

\[-|x^3| < x^3 \cos \left(\frac{\pi}{x} \right) \sin(x^2) < |x^3| \]

(Note that the absolute values around the \(x^3 \)'s are necessary, since we don’t know if the \(x^3 \) that we multiplied by is positive or negative, so the directions of the inequalities may have shifted...)

We know that \(\lim_{x \to 0} |x^3| = 0 \), as is \(\lim_{x \to 0} -|x^3| = 0 \). Therefore, by the Squeeze Theorem, we conclude that the desired limit is also zero.
4. Find the value of c for which the following function is continuous:

$$f(x) = \begin{cases} \frac{x^2 + x - 6}{x - 2} & \text{if } x < 2 \\ cx & \text{if } x \geq 2 \end{cases}$$

Solution:

For this function to be continuous, we need the left hand and right hand limits to both exist and be equal.

The left hand limit is

$$\lim_{x \to 2^-} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2^-} \frac{(x + 3)(x - 2)}{x - 2} = \lim_{x \to 2^-} (x + 3) = 5$$

The right hand limit is

$$\lim_{x \to 2^+} cx = 2c$$

So, for the above function to be continuous, we need to have $5 = 2c$, or $c = \frac{5}{2}$.
5. Use the limit definition of a derivative to find the derivative of the following function:

\[f(x) = x^3 - 2x^2 \]

Solution:

By definition,

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

\[
= \lim_{h \to 0} \frac{(x + h)^3 - 2(x + h)^2 - (x^3 - 2x^2)}{h}
\]

\[
= \lim_{h \to 0} \frac{(x^3 + 3x^2h + 3xh^2 + h^3) - 2(x^2 + 2xh + h^2) - (x^3 - 2x^2)}{h}
\]

\[
= \lim_{h \to 0} \frac{(3x^2h + 3xh^2 + h^3) - 2(2xh + h^2)}{h}
\]

\[
= \lim_{h \to 0} \left(3x^2 + 3xh + h^2\right) - 2(2x + h)
\]

\[
= 3x^2 - 4x
\]
6. Use the Taylor polynomial of degree 4 for \(f(x) = e^x \) at \(a = 0 \) to find a rational estimate for \(e \) itself. You may use the fact that \((e^x)' = e^x\).

Express your answer as the ratio of two integers, in reduced form.

Solution:

The general Taylor polynomial of degree four is given by

\[
T(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \frac{f^{[4]}(a)}{4!}(x - a)^4
\]

Noting that \(f^{[n]}(x) = e^x \) for all values of \(n \), we see that \(f^{[n]}(0) = e^0 = 1 \) for all \(n \). This allows us to write down the Taylor polynomial of degree four for \(e^x \) as

\[
T(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4
\]

We want to estimate \(e \) itself, which of course is equal to \(e^1 = f(1) \). So our approximation of \(e \) is given by \(T(1) \), which is

\[
T(1) = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} = \frac{65}{24}
\]
7. Use the information from the graph of $f(x)$ below to prove that, based on the $\epsilon - \delta$ definition of a limit, 5 is NOT the limit of $f(x)$ as x approaches 6.

(You may assume that for $x < 6$, we have $f(x) < 5$, and for $x > 6$, we have $f(x) > 7$)

(Hint – you need only show that there is an ϵ for which there is no δ that satisfies the usual condition, and explain why that condition is not satisfied.)

![Graph of f(x)](image)

Solution:

Choose $\epsilon = 1$, and let δ be arbitrarily given.

There will always be some value of x greater than 6 that satisfies the hypothesis

$$0 < |x - 6| < \delta$$

But since this value of x is greater than six, we know that $f(x) > 7$, which implies that $f(x) - 5 > 2$, and thus $|f(x) - 5| > 2$. Therefore we can certainly conclude that

$$|f(x) - 5| \not< 1$$

This shows that the chosen δ does not satisfy the required condition

$$0 < |x - 6| < \delta \implies |f(x) - 5| < 1$$

Since δ was chosen arbitrarily, we conclude that no δ can satisfy the required condition, so 5 cannot be the limit.
Bonus Question:

Use the $\epsilon - \delta$ definition of a limit to show that if

$$\lim_{x \to a} f(x) = L \quad \text{and} \quad \lim_{x \to a} g(x) = K$$

then

$$\lim_{x \to a} (f(x) + g(x)) = L + K$$

Solution:

Thinking: We know that we will eventually need to conclude

$$|f(x) + g(x) - (L + K)| < \epsilon$$

To try to accomplish this, note that

$$|f(x) + g(x) - (L + K)| < |f(x) - L| + |g(x) - K|$$

If we could somehow ensure that each of the items on the right side of the above equation were less than $\epsilon/2$, then certainly we could conclude what we want.

Of course, we are given that L is the limit of f, so we know that there must exist some δ_1 such that

$$0 < |x - a| < \delta_1 \implies |f(x) - L| < \epsilon/2$$

We are also given that K is the limit of g, so we know that there must exist some δ_2 such that

$$0 < |x - a| < \delta_2 \implies |g(x) - K| < \epsilon/2$$

To ensure that both of these hold, we decide to choose $\delta = \min\{\delta_1, \delta_2\}$, since

$$0 < |x - a| < \min\{\delta_1, \delta_2\} \implies 0 < |x - a| < \delta_1$$

and

$$0 < |x - a| < \min\{\delta_1, \delta_2\} \implies 0 < |x - a| < \delta_2$$

(next page...)

9
Proof:

Let \(\varepsilon > 0 \) be given, and choose \(\delta \) as indicated in the “thinking” section above. We must show that this choice satisfies the usual condition.

We know from our choice of \(\delta \) that

\[
0 < |x - a| < \delta \implies 0 < |x - a| < \delta_1 \implies |f(x) - L| < \varepsilon/2
\]

and

\[
0 < |x - a| < \delta \implies 0 < |x - a| < \delta_2 \implies |g(x) - K| < \varepsilon/2
\]

Therefore,

\[
|f(x) + g(x) - (L + K)| < |f(x) - L| + |g(x) - K| < \varepsilon/2 + \varepsilon/2 = \varepsilon
\]

as desired.