MATH 51
FIRST SAMPLE MIDTERM #1
SOLUTIONS

90 Minutes

NAME:

Section Number:

I agree to abide by the Honor Code.
Signature:

Instructions: Show all work. No calculators.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>2.</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>3.</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>6.</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
1. For each of the following, either give an example of a matrix, M, which satisfies the conditions, or else explain why it can’t exist.

(a) \[
\begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}
\text{ and } \begin{bmatrix}
2 \\
3 \\
2 \\
1
\end{bmatrix}
\] span the column space of M, and \[
\begin{bmatrix}
1 \\
2
\end{bmatrix}
\] spans the null space of M.

M must be 4×3. For two of its columns we can take the given basis of its null space. In order to get \[
\begin{bmatrix}
1 \\
4 \\
-14
\end{bmatrix}
\] in the null space, we need to take the third column equal to -2 times the first -3 times the second. Thus, \[
M = \begin{bmatrix}
1 & 4 & -14 \\
2 & 3 & -13 \\
3 & 2 & -12 \\
4 & 1 & -11
\end{bmatrix}
\]

(b) \[
\begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}
\text{ and } \begin{bmatrix}
6 \\
5 \\
4 \\
2
\end{bmatrix}
\] span the column space of M, and \[
\begin{bmatrix}
2 \\
3 \\
4 \\
5
\end{bmatrix}
\] spans the null space of M.

This is not possible. M would be a 6×4 matrix with a two-dimensional column space and a one-dimensional null space. But the dimensions of the null and column space must add up to the number of columns (4 in this case).

(c) M is 3×2 and \[
\begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
-1
\end{bmatrix}, \text{ and } \begin{bmatrix}
-2 \\
11 \\
1
\end{bmatrix}
\] span the column space.

The matrix \[
\begin{bmatrix}
1 & -1 & -2 \\
2 & 1 & 11 \\
2 & -1 & 1
\end{bmatrix}
\] has the correct null space, but not the right shape. Doing row-reduction gives \[
\begin{bmatrix}
1 & -1 & -2 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{bmatrix}
\].

Thus, the column space is spanned by the first two vectors alone. It follows that $M = \begin{bmatrix}
1 & -1 \\
2 & 1 \\
2 & -1
\end{bmatrix}$ has the correct null space.
2. Consider the following system of linear equations

\[
\begin{align*}
2x + y &= 2 \\
-2x - 2y + z &= -4 \\
3x + z &= 2
\end{align*}
\]

(a) Re-write the system as a matrix equation.

\[
\begin{bmatrix}
2 & 1 & 0 \\
-2 & -2 & 1 \\
3 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
=
\begin{bmatrix}
2 \\
-4 \\
2
\end{bmatrix}
\]

(b) Find the inverse of the matrix from (a).

We must compute the reduced echelon form of

\[
\begin{bmatrix}
2 & 1 & 0 & 1 & 0 & 0 \\
-2 & -2 & 1 & 0 & 1 & 0 \\
3 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

Eliminating in the first column gives

\[
\begin{bmatrix}
1 & 1/2 & 0 & 1/2 & 0 & 0 \\
0 & -1 & 1 & 1 & 0 \\
0 & -3/2 & 1 & -3/2 & 0 & 1
\end{bmatrix}
\]

Next, we eliminate in the second column:

\[
\begin{bmatrix}
1 & 0 & 1/2 & 1 & 1/2 & 0 \\
0 & 1 & -1 & -1 & -1 & 0 \\
0 & 0 & -1/2 & -3 & -3/2 & 1
\end{bmatrix}
\]

Finally, eliminate in the third column:

\[
\begin{bmatrix}
1 & 0 & 0 & -2 & -1 & 1 \\
0 & 1 & 0 & 5 & 2 & -2 \\
0 & 0 & 0 & 6 & 3 & -2
\end{bmatrix}
\]

Thus,

\[
M^{-1} = \begin{bmatrix}
-2 & -1 & 1 \\
5 & 2 & -2 \\
6 & 3 & -2
\end{bmatrix}
\]

(c) Using the answer to (b), solve the system.

We have

\[
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
= M^{-1}
\begin{bmatrix}
2 \\
-4 \\
2
\end{bmatrix}
= \begin{bmatrix}
-2 & -1 & 1 \\
5 & 2 & -2 \\
6 & 3 & -2
\end{bmatrix}
\begin{bmatrix}
2 \\
-4 \\
2
\end{bmatrix}
= \begin{bmatrix}
2 \\
-2 \\
-4
\end{bmatrix}
\]
3. Find a 3×3 matrix that rotates the x-y plane by an angle θ and which sends the vector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$.

Just as when rotating in \mathbb{R}^2, it is easy to see in this case that $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ gets mapped to $\begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}$. Similarly, $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ maps to $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. It follows that the matrix is

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$
4. Give equations for two planes which intersect in the line
\[
\begin{bmatrix}
3 \\
-2 \\
2
\end{bmatrix} + t \begin{bmatrix}
1 \\
2 \\
4
\end{bmatrix}.
\]

First, let’s get planes which intersect in the span of \(\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \).

For this, we must find two independent vectors perpendicular to this one. It is easy to see that \(\begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix} \) and \(\begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix} \) work.

Therefore, the planes
\[
\begin{bmatrix}
-4 \\
0 \\
-2
\end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \quad \text{and} \quad \begin{bmatrix}
-2 \\
2 \\
0
\end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0
\]

intersect in the line through the origin.

Next, we shift everything by \(\begin{bmatrix} -2 \\ 2 \end{bmatrix} \). We get the planes
\[
\begin{bmatrix}
-4 \\
0 \\
1
\end{bmatrix} \cdot \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} \right) = 0 \quad \text{and} \quad \begin{bmatrix}
-2 \\
2 \\
0
\end{bmatrix} \cdot \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} \right) = 0.
\]

In other words, the planes
\[
\begin{align*}
-4x + z &= -10 \\
-2x + y &= -8
\end{align*}
\]

intersect in the given line.
5. Suppose that A is a 3×3 matrix, B is a 3×4 matrix, and $M = AB$.
(a) Suppose that the column space of M is three-dimensional. Prove that A is invertible.

We know that the column space of A contains the column space of M. Since the column space of M is three-dimensional, the column space of A is at least three-dimensional. But A is 3×3. Therefore, the column space of A is as large as it could possibly be, namely all of \mathbb{R}^3. But any square matrix with linearly independent columns is invertible.

(b) Suppose that the null space and the column space of A are spanned by \(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) and \(\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix} \), respectively. The null space and the column space of B are spanned by \(\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \), and \(\begin{bmatrix} 1 \\ 3 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 7 \\ 1 \\ 1 \end{bmatrix} \), respectively. Compute the dimension of the null space of M.

The null space of M contains the null space of B which is two-dimensional. Thus, the null space of M is at least two-dimensional. But it could be larger. It is larger if the column space of B has non-trivial intersection with the null space of A. Since the null space of A is one-dimensional, we see that the dimension of the null space of M is either two or three.

To decide which it is, we must determine whether \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \) is in the span of \(\begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix} \) and \(\begin{bmatrix} 7 \\ 1 \end{bmatrix} \). We do Gaussian elimination on the column space of B and so the null space of M is three-dimensional.
6. Suppose that \(M \) is an \(n \times n \) matrix with the following property: for any \(\mathbf{v}, \mathbf{w} \),
\[
(M\mathbf{v}) \cdot (M\mathbf{w}) = \mathbf{v} \cdot \mathbf{w}.
\]
(Such a matrix is called \textit{orthogonal}.)
(a) Prove that the columns of \(M \) form an orthonormal basis for \(\mathbb{R}^n \).

Let \(\mathbf{e}_1, \ldots, \mathbf{e}_n \) be the standard basis for \(\mathbb{R}^n \). The \(i \)th column of \(M \) is \(M\mathbf{e}_i \). Furthermore, since \(M \) is an orthogonal matrix, for every \(i \)
\[
(M\mathbf{e}_i) \cdot (M\mathbf{e}_i) = \mathbf{e}_i \cdot \mathbf{e}_i = 1
\]
and, for \(i \neq j \),
\[
(M\mathbf{e}_i) \cdot (M\mathbf{e}_j) = \mathbf{e}_i \cdot \mathbf{e}_j = 0.
\]
But this is exactly what it means for the columns of \(M \) to be orthonormal.

(b) Prove that \(M \) is invertible.

To prove that \(M \) is invertible, it is enough to check that the columns of \(M \) are linearly independent. But ANY collection of orthonormal vectors is linearly independent. To see this, suppose that \(\mathbf{u}_1, \ldots, \mathbf{u}_n \) are orthonormal. If
\[
a_1 \mathbf{u}_1 + \cdots + a_n \mathbf{u}_n = \mathbf{0},
\]
then, for each \(i \), we take the dot product of both sides with \(\mathbf{u}_i \). We get \(a_i = 0 \). This shows that the \(\mathbf{u}'s \) are linearly independent.