More Examples of Planes

There are three ways to describe a plane in \mathbb{R}^3: with a single linear equation, parametrically (i.e. with two spanning vectors and a translating vector), or using a normal vector and a translating vector. Here we give some examples of converting between these representations.

The set of vectors perpendicular to a given vector, \mathbf{n}, is the set of all $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ so that $\mathbf{n} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$. This is a plane through the origin. Now suppose we translate by \mathbf{q}. How do we find an equation for the resulting plane?

Here is an analogy. Suppose we have a device that beeps when it is pointing straight north. How can we recognize when we are pointing straight west? Well, to go from pointing north to pointing west we rotate 90° to the left. Therefore, we are pointing west if, when we turn 90° to the right, the device beeps.

In the same way, how can we recognize that we are on the plane translated by \mathbf{q}? If, when we translate back by \mathbf{q}, we are on the original plane. Therefore, \mathbf{r} is on the translated plane if $\mathbf{r} - \mathbf{q}$ is perpendicular to \mathbf{n}, i.e. if $\mathbf{n} \cdot (\mathbf{r} - \mathbf{q}) = 0$. This can also be written as $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{q}$.

EXAMPLE. Let $\mathbf{n} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$ and $\mathbf{q} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$. An equation for the plane through \mathbf{q} perpendicular to \mathbf{n} is

$$\begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} \cdot \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right) = 0$$

i.e.

$$\begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Thus, $3x - y + z = 2$.

EXAMPLE. Find an equation for the plane spanned by $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

All we need is a normal vector, that is, any non-zero vector $\mathbf{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$ which satisfies $\begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 0$ and $\begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 0$. This leads to a
system of two equations in three variables
\[n_1 + n_2 + n_3 = 0 \]
\[n_1 + 2n_2 + 3n_3 = 0. \]
Subtracting,
\[n_1 + n_2 + n_3 = 0 \]
\[n_2 + 2n_3 = 0. \]
There are, of course, a whole lines worth of normal vectors, but we only want one non-zero one. Set \(n_3 = 1 \). Then we get \(n_2 = -2 \) and \(n_1 = 1 \).
Therefore \(\mathbf{n} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \) is a normal vector for our plane. An equation for the plane is \(x - 2y + z = 0 \).

EXAMPLE. Consider the plane \(x - 3y + 4z = 0 \). This plane can also be described as the set of vectors perpendicular to \(\begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix} \). Let’s find two vectors which span the plane. For this, it is enough to find two linearly independent vectors on the plane. Notice that \(x = -4, y = 0, z = 1 \) and \(x = 3, y = 1, z = 0 \) are solutions to the equation. Thus, the plane is spanned by \(\begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix} \) and \(\begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} \).

Next, consider the plane \(x - 3y + 4z = 3 \). This plane is parallel to the previous one. To give a parametric description, we must find one vector on the plane, e.g. \(\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} \). The plane consists of all \(\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} \), \(s, t \) any scalars.

EXAMPLE. Find a system of two linear equations whose set of solutions is the line spanned by \(\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \). In other words, find two planes whose intersection is this line. Since \(\mathbf{w} \) is on both planes, it will be perpendicular to both normal vectors. In other words, we need two independent vectors perpendicular to \(\mathbf{w} \). In this case, we can find them by inspection: \(\mathbf{n}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} \) and \(\mathbf{n}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \) work. Thus, our line is the set of solutions to
\[x - 2y = 0 \]
\[y - z = 0. \]