1. a. Let us first find the present value of the award. This is
\[
\int_{0}^{30} 20000 \times e^{-0.06x} \, dx
\]
Evaluation the integral, we get
\[
-\frac{1}{0.06} \times 20000 \times e^{0.06x}|_{0}^{30} = 278,233
\]
So the prize is worth $278,233. Now, how much money five years from now is worth that? We have to find x such that
\[
x \times e^{-0.06 \times 5} = 278,233
\]
x must be 278,233 \times e^{0.3} = 375,575

b. First we should note that 6\% interest compounded monthly means that after n years, P dollars will equal \(P \times (1 + \frac{0.06}{12})^{12n} \). Alternatively \(P \) dollars \(n \) years from now is worth \(P \times (1 + \frac{0.06}{12})^{-12n} \) dollars today. Since the prize payments start on the winning date and end twenty-nine years from the winning date, the value of the prize is
\[
20000 + 20000(1 + \frac{0.06}{12})^{-12} + 20000(1 + \frac{0.06}{12})^{-12 \times 2} + \ldots + 20000(1 + \frac{0.06}{12})^{12 \times 29}
\]
Setting \(\alpha = (1 + \frac{0.06}{12})^{-12} = .9419 \), we may rewrite this as
\[
20000 \times (1 + \alpha + \alpha^2 + \ldots + \alpha^{29})
\]
Using the formula for the geometric series, we note
\[
1 + \alpha + \alpha^2 + \ldots + \alpha^{29} = \frac{\alpha^{30} - 1}{\alpha - 1} = 14.355
\]
Therefore, the present value of the prize is \(20,000 \times 14.355 = 287100 \). This corresponded to a payment of \(287100 \times (1 + \frac{0.06}{12})^{12 \times 5} = 387255 \).
2. a. Use your favorite method (guess and check, separability),

\[y = Ce^{kx} \]

where \(C \) is some constant.

b. Let us define by \(r(x) \) the radius of a horizontal cross-section of the column \(x \) meters from the top. Therefore the area of the cross-section is \(\pi(r(x))^2 \). This area is proportional to the total mass above it. There is the contribution of the load \(L \) and also the weight of the column. Therefore, the total mass above the cross-section is

\[
L + \int_0^x a \times \pi(r(t))^2 \, dt
\]

where \(a \) is the density of the material. Then the statement about the cross-section and the weight translates to

\[
\pi(r(x))^2 = c(L + \int_0^x a \pi(r(t))^2 \, dt)
\]

Let us find \(c \), the constant of proportionality. Set \(x = 0 \) and we get

\[
\pi r_0^2 = c(L + \int_0^0 a \pi(r(t))^2 \, dt) = cL
\]

Therefore, \(c = \frac{\pi r_0^2}{L} \). For ease of computation, we’ll continue to write \(c \) until the end of the problem. Differentiate the proportionality condition and use the Fundamental Theorem of Calculus to get

\[
2 \pi r(x) r'(x) = ca \pi r(x)^2
\]

Cancelling common terms, we get

\[
r'(x) = \frac{ca}{2} r(x)
\]

This is a differential equation we can solve. Noting \(r(0) = r_0 \) and using part a, we realize the solution must be

\[
r(x) = r_0 e^{\frac{ca}{2} x}
\]

Substituting in \(c \), we get

\[
r(x) = r_0 e^{\frac{\pi a r_0^2}{2L} x}
\]