EXAM 1 SOLUTIONS
You have 2 hours.
No notes, no books.
YOU MUST SHOW ALL WORK TO RECEIVE CREDIT
Good luck!

Name ________________________________

1. ___________ (/20 points)

2. ___________ (/20 points)

3. ___________ (/15 points)

4. ___________ (/15 points)

5. ___________ (/15 points)

6. ___________ (/15 points)

Bonus ___________ (/10 points)

Total ___________ (/100 points)
1. Evaluate the following antiderivatives:

a)
\[\int \frac{\cos(\ln x)}{x} \, dx \]

Solution:
We make the substitution \(u = \ln x \). Then \(du = \frac{1}{x} \, dx \). So, we have

\[\int \frac{\cos(\ln x)}{x} \, dx = \int \cos(u) \, du = \sin(u) + c = \sin(\ln x) + c \]

b)
\[\int t^2 e^{2t} \, dt \]

Solution:
We integrate by parts, with \(f = t^2 \), and \(g' = e^{2t} \). Then we have \(f' = 2t \), and \(g = \frac{1}{2} e^{2t} \). So our antiderivative becomes

\[t^2 \left(\frac{1}{2} e^{2t} \right) - \int 2t \left(\frac{1}{2} e^{2t} \right) \, dt = \frac{1}{2} t^2 e^{2t} - \int t e^{2t} \, dt \]

Again, we integrate by parts, this time with \(f = t \) and \(g' = e^{2t} \). So \(f' = 1 \) and \(g = \frac{1}{2} e^{2t} \). Our antiderivative becomes

\[\frac{1}{2} t^2 e^{2t} - \int t e^{2t} \, dt = \frac{1}{2} t^2 e^{2t} - \left[t \left(\frac{1}{2} e^{2t} \right) - \int \frac{1}{2} e^{2t} \, dt \right] \]

\[= \frac{1}{2} t^2 e^{2t} - \frac{1}{2} t e^{2t} + \frac{1}{2} \int e^{2t} \, dt \]

\[= \frac{1}{2} t^2 e^{2t} - \frac{1}{2} t e^{2t} + \frac{1}{4} e^{2t} + c \]

\[= \frac{e^{2t}}{4} (2t^2 - 2t + 1) + c \]
2. Find the following integrals:

\[\int_{1}^{e} x^2 \ln x \, dx \]

Solution:
First we find the antiderivative, by integrating by parts. We choose \(f = \ln x \), and \(g' = x^2 \), giving us \(f' = \frac{1}{x} \), and \(g = \frac{1}{3} x^3 \). Our antiderivative then becomes

\[
\int x^2 \ln x \, dx = \frac{1}{3} x^3 \ln x - \int \left(\frac{1}{x} \right) \frac{1}{3} x^3 \, dx
\]
\[
= \frac{1}{3} x^3 \ln x - \int \frac{1}{3} x^2 \, dx
\]
\[
= \frac{1}{3} x^3 \ln x - \frac{1}{9} x^3
\]
So, our integral is then

\[
\int_{1}^{e} x^2 \ln x \, dx = \left(\frac{1}{3} e^3 \ln e - \frac{1}{9} e^3 \right) - \left(\frac{1}{3} \ln 1 - \frac{1}{9} \right)
\]
\[
= \frac{1}{3} e^3 - \frac{1}{9} e^3 + \frac{1}{9} = \frac{2}{9} e^3 + \frac{1}{9}
\]

b)

\[\int_{\pi}^{2\pi} (\sin t) \left(e^{\cos t} \right) \, dt \]

Solution:
Seeing the composition in the integrand, we substitute the inside function, \(u = \cos t \). Then \(du = -\sin t \, dt \), so that \(-du = \sin t \, dt \). The antiderivative then becomes

\[
\int e^u \, (-du) = - \int e^u \, du = -e^u = -e^{\cos t}
\]
So, the integral is then

\[
\int_{\pi}^{2\pi} (\sin t) \left(e^{\cos t} \right) \, dt = \left(-e^{\cos 2\pi} \right) - \left(-e^{\cos \pi} \right)
\]
\[
= -e^1 + e^{-1}
\]
\[
= -e + \frac{1}{e}
\]
3. Find the antiderivative.

\[\int \frac{2x^2 + x + 1}{(x^2 + 1)(x - 1)} \, dx \]

Solution:
We use the method of partial fractions to try to break this up into two separate integrals.

\[
\frac{2x^2 + x + 1}{(x^2 + 1)(x - 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x - 1}
\]

\[2x^2 + x + 1 = (Ax + B)(x - 1) + (C)(x^2 + 1) \]

\[= (A + C)x^2 + (-A + B)x + (-B + C) \]

Plugging in \(x = 1 \) into the second equation above tells us immediately that \(C = 2 \); then, equating coefficients in the last equation gives us \(A + C = 2 \implies A = 0 \), and then \(-A + B = 1 \implies B = 1 \). So we have

\[
\frac{2x^2 + x + 1}{(x^2 + 1)(x - 1)} = \frac{1}{x^2 + 1} + \frac{2}{x - 1}
\]

So the antiderivative becomes

\[
\int \frac{2x^2 + x + 1}{(x^2 + 1)(x - 1)} \, dx = \int \frac{1}{x^2 + 1} + \frac{2}{x - 1} \, dx
\]

\[= \int \frac{1}{x^2 + 1} \, dx + \int \frac{2}{x - 1} \, dx \]

\[= \arctan(x) + 2 \ln |x - 1| + c \]
4. Use the error bound formula for Simpson’s Rule given here

\[|E_{S_n}| \leq \frac{K_4(b-a)^5}{180n^4} \quad \text{(where} \quad K_4 \geq |f^{(4)}(x)| \quad \text{on} \quad [a,b]) \]

to show that Simpson’s Rule (using any value of \(n \)) provides an exact answer when estimating integrals of polynomials of degree three or lower – in other words, functions of the form

\[f(x) = ax^3 + bx^2 + cx + d \]

(Recall that \(f^{[4]} \) means the fourth derivative of the function \(f \).)

Solution:
First, notice that for any function \(f \) of the given form, we have that \(f^{[4]} = 0 \) on the whole interval from \(a \) to \(b \).

So, since \(K_4 \) can be any number that is greater than or equal to \(|f^{[4]}| \) on the whole interval, we can choose \(K_4 = 0 \).

Plugging this into the given formula for the error bound, we get

\[|E_{S_n}| = \frac{0(b-a)^5}{180n^4} = 0 \quad \text{(where} \quad K_4 \geq |f^{[4]}(x)| \quad \text{on} \quad [a,b]) \]

We conclude that the error \(E_{S_n} \) must be zero, which means that the estimate \(S_n \) is exact.
5. Use the Evaluation Theorem to prove FTC-I. (You may assume that the function f has an antiderivative.) For your reference, here are the statements of those theorems:

Evaluation Theorem:
If f is continuous on $[a, b]$, and F is any antiderivative of f, then

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

FTC-I: If f is continuous on $[a, b]$, and

$$g(x) = \int_a^x f(t) \, dt$$

then $g'(x) = f(x)$.

Solution:
We need only compute the derivative of g; as we did in class, we use that Evaluation Theorem as suggested to evaluate g before taking the derivative.

We assume that f has an antiderivative; call it F. Then, by the Evaluation Theorem, we have

$$g'(x) = \left(\int_a^x f(t) \, dt \right)' = (F(x) - F(a))'$$

We compute these resulting derivatives directly with the chain rule.

$$= F'(x)(x)' - F'(a)(a)' = F'(x) = f(x)$$
6. Determine if the following integral converges or diverges:

\[\int_1^\infty |\sin(e^{x^2+3\ln x})| e^{-x} \, dx \]

Solution:
We use the Comparison Theorem. Since the dominant part of the integrand is \(e^{-x} \), and since

\[\int_1^\infty e^{-x} \, dx \]

converges, we suspect that the given integral probably converges also. In fact, we also notice that

\[|\sin(e^{x^2+3\ln x})| e^{-x} \leq e^{-x} \]

Both of the above functions are positive, so we can apply the Comparison Theorem. We conclude that the given integral converges.
Bonus Question: Prove the following.

The Limit Comparison Theorem

If f and g are continuous, positive functions for all values of x, and

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = k \quad \text{(with } 0 < k < \infty) \]

and if $\int_a^\infty g(x) \, dx$ converges, then so does $\int_a^\infty f(x) \, dx$.

Solution:

(Note: This was also done in class!) The definition of the limit tells us that there exists some N such that

\[(k - 1) < \frac{f(x)}{g(x)} < (k + 1) \quad \text{whenever } x > N.\]

So, for those values of x, we have

\[\frac{f(x)}{g(x)} < (k + 1) \implies f(x) < (k + 1)g(x)\]

We now break the integral in question into two pieces:

\[\int_a^\infty f(x) \, dx = \int_a^N f(x) \, dx + \int_N^\infty f(x) \, dx\]

The first integral is of a continuous function on a closed, bounded interval, so we know that is finite. The convergence of the second integral is concluded by the following, which we can do because of the inequality determined above:

\[\int_N^\infty f(x) \, dx < \int_N^\infty (k + 1)g(x) \, dx = (k + 1) \int_N^\infty g(x) \, dx\]

(the last integral in the equation above is given to converge; therefore, by the Comparison Theorem, the integral on the left converges.)

We conclude, as desired, that the integral of f converges.