QUIZ 2 SOLUTIONS

1a. In order for a function \(f \) to be continuous at a point \(a \), the limit \(\lim_{x \to a} f(x) \) must be equal to \(f(a) \). In the above function, we see that

\[
f(2) = 2^{2k-3}.
\]

We need to choose \(k \) appropriately so that \(\lim_{x \to a} f(x) \) exists. We compute the left and right hand limits separately. The left hand limit is

\[
\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{x - \sqrt{x + 2}}{3x - 6} = \lim_{x \to 2^-} \frac{(x - \sqrt{x + 2})(x + \sqrt{x + 2})}{(3x - 6)(x + \sqrt{x + 2})} = \lim_{x \to 2^-} \frac{x^2 - (x + 2)}{3x - 6(x + \sqrt{x + 2})} = \lim_{x \to 2^-} \frac{x - 2}{3(x - 2)(x + \sqrt{x + 2})} = \lim_{x \to 2^-} \frac{x + 1}{3(x + \sqrt{x + 2})} = \frac{3}{12} = \frac{1}{4}
\]

On the other hand, the right hand limit is just

\[
\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 2^{kx-3} = 2^{2k-3} = f(2),
\]

and so we need to solve

\[
2^{2k-3} = \frac{1}{4}.
\]

Since \(\frac{1}{4} = 2^{-2} \), we see that \(2k - 3 = -2 \) or \(k = \frac{1}{2} \).

1b. Because \(f \) is even, our graph must be symmetric about the y-axis. We must have a horizontal asymptote at \(y = 2 \), and vertical asymptotes at \(x = 2, x = -2, x = 4 \) and \(x = -4 \).

2a. The statement \(\lim_{x \to a} f(x) = L \) means that for every \(\epsilon > 0 \), you can find a \(\delta > 0 \) so that \(|f(x) - L| < \epsilon \) whenever \(0 < |x - a| < \delta \).

2b. We need to find \(\delta \) so that \(|x^2 - 6x + 9| < \epsilon \) whenever \(0 < |x - 3| < \delta \). Since \(x^2 - 6x + 9 = (x - 3)^2 \), we see that if we take \(\delta = \sqrt{\epsilon} \), then that choice of \(\delta \) “works;” that is, if \(|x - 3| < \sqrt{\epsilon} \), then \(|x - 3|^2 = |x^2 - 6x + 9| < (\sqrt{\epsilon})^2 = \epsilon \).