SECOND SAMPLE MIDTERM #1
MATH 41

FALL, 1999

NAME:

Section Number:

I agree to abide by the Honor Code.
Signature:

Instructions: Show all work. Unless a numerical approximation is specifically requested, an EXACT solution is required.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. Consider the function \(f(x) = \sqrt{x^2 + 1} \).
 (a) Using the definition of derivative, determine whether \(f'(0) \) exists, and if it does, find its value.

(b) Using the tangent line approximation, estimate \(\sqrt{1.1} \).
2. (a) Is \(\frac{\ln 2}{\ln 8} \) rational or irrational? How do you know?

(b) Prove that \(\log_2 6 \) is an irrational number.
3. (a) Does \(f(x) = \sqrt{x^2 + 1} - \sqrt{x^2 + 5x} \) have a limit as \(x \to \infty \)? If so, what is it?

(b) Find \(\lim_{x \to 0} \left(e^{-1/x^2} \cos(1/x^2) \right) \).
(c) Let f be a function and a a number in the domain of f. Consider the following argument:

$$
\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a)
$$

$$
= \left(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \right) \left(\lim_{x \to a} (x - a) \right).
$$

Since $\lim_{x \to a} (x - a) = 0$, it follows that $\lim_{x \to a} (f(x) - f(a)) = 0$. In other words, f is continuous at a. This seems to show that every function is continuous at every point of its domain. But this is nonsense. What’s wrong?
4. (a) Suppose that \(\ln(s - 1) - 6 = 2 \ln(\frac{t}{e^t}) \). Write \(s \) as a function of \(t \). Here \(s > 1, t > 0 \).

(b) Using the definition of derivative, calculate \(s'(2) \).

(c) Write the equation for the tangent line to the graph of \(s(t) \) when \(t = 2 \).
5. Suppose that a cone is being filled with water coming through a hose at a constant rate. If the depth of the water, measured from the tip, is \(h(t) \), what can you say about \(h'(t) \) and \(h''(t) \)? Sketch a possible graph of \(h'(t) \).
6. Suppose that f is a function that satisfies the equation
\[f(x + y) = f(x) + f(y) + 3x^2y + 3xy^2 \]
for all real numbers x and y. Also, assume that
\[\lim_{x \to 0} \frac{f(x)}{x} = 1. \]

(a) Find $f(0)$.

(b) Find $f'(0)$.

(c) Find $f'(x)$.
7. (a) Sketch the graph of a function $f(x)$ which satisfies $f'(x) > 0$ for $x < -2$ or $x > 5$, $f'(x) < 0$ for $-2 < x < 2$, and $f'(x) = 0$ for $2 \leq x \leq 5$. Also, the graph of f lies above its tangent lines for $x < -3$ and below its tangent lines for $-3 < x < 1$ and $x > 7$.
(b) Below is a graph of $g''(t)$. Sketch graphs of $g'(t)$ and $g(t)$ with $g(1) = g'(1) = 0.$
8. (a) State the definition of \(\lim_{x \to \infty} f(x) = L \).

(b) Using the definition, prove that \(\lim_{x \to \infty} \frac{1}{x^2} = 0 \).