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1. (16 pts) Of the matrices below, there is exactly one pair of them that are similar to each other.

M1 =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 3

 M2 =


2 1 0 0
0 2 0 0
0 0 3 1
0 0 0 3

 M3 =


3 0 0 0
0 3 0 0
0 0 2 1
0 0 0 2

 M4 =


3 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2


(a) Identify the similar pair, and explain how you know the others are not similar.

(b) Name one of these matrices A and the other B, and find a matrix C for which A = CBC−1.



2. (17 pts) The vector space R3 is made an inner product space V using the non-standard inner
product 〈~v, ~w〉 = [~v]V · [~w]V , where

V =


1

1
1

 ,

1
2
3

 ,

3
1
0


(a) Find the angle in V between (0, 1, 0) and (0, 0, 1). (Hint: Some of the arithmetic given in

the statement of question 4. on this exam might be useful.)

(b) Find a vector (in coordinates with respect to the standard basis) orthogonal in V to (4, 1, 2).



3. (17 pts) The function f is a linear combination of sin x and cos x, and we also know:∫ π

−π
(x2 + 1)f(x) cosx dx = 2∫ π

−π
(x2 + 1)f(x) sinx dx = 3

∫ π

−π
(x2 + 1) cos2 x dx =

3π

2
+
π3

3
= k1∫ π

−π
(x2 + 1) sin2 x dx =

π

2
+
π3

3
= k2

Identify and use a relevant inner product and an orthonormal basis of span(sinx, cosx) to find
the function f (you may leave the coefficients in terms of k1 and k2).



4. (17 pts) The information below is given. Find a fundamental set of solutions to the system
~y′ = A~y, and the solution to the initial value problem with ~y(0) = (1, 0, 0).3 1 0

0 3 0
0 0 5

 =

1 1 1
1 2 3
3 1 0

 A

−3 1 1
9 −3 −2
−5 2 1


1 0 0

0 1 0
0 0 1

 =

1 1 1
1 2 3
3 1 0

−3 1 1
9 −3 −2
−5 2 1





5. (17 pts) Find the form of a particular solution to the equation below. Don’t evaluate the coeffi-
cients, but explain how you know they can be found.

~y′ = A~y +

exx
1

 , with A =

4 2 12
0 2 6
0 0 3





6. (16 pts) Your friend Bob says that he has found an example of a 3rd order constant coefficient
linear homogeneous differential equation whose characteristic polynomial has a real root with
multiplicity 2, and that when converted to a first order system of equations the resulting coefficient
matrix is diagonalizable.

Find such an example (showing that Bob could be right) or explain how you know Bob must be
wrong.


