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1. (16 pts) Find a fundamental set of real solutions to the constant coefficient linear differential
equation L(y) = 0 whose characteristic polynomial is

p(λ) = (λ+ 1)(λ− 2)3(λ3 + 5λ2 + 17λ+ 13)2



2. (17 pts) Find the form of a particular solution to the constant coefficient linear differential equa-
tion

L(y) = 6xex sin(3x)− x2e4x

whose characteristic polynomial is

p(λ) = (λ− 4)7(λ2 + 5)(λ2 − 2λ+ 10)(4λ+ 2)



3. (16 pts) In this question we have a 1 kg mass, and a hanging spring which stretches 2 m when the
mass is attached. Gravitational acceleration in this question is 10 m/s2 and there is no friction.

(a) Find a fundamental set of real solutions to the differential equation describing the above
system.

(b) Suppose now that an external periodic force of cos(4t) N is applied. Find a particular
solution and identify if there is resonance. (Recall 1 N = 1 kg m/s2.)



4. (17 pts) Let V be the vector space of continuously differentiable vector fields in R3, let B be
the solid closed unit ball in R3, let g be a continuous real-valued function on R3, and define
Pg : V → R by

Pg(�F ) =

���

B

�
∇ · �F (�x)

��
g(�x)

�
dV

Bob says that Pg is a linear transformation; prove he is right, or find a counterexample to show
he is wrong.



5. (17 pts) There are values of b and c such that for every y that is a solution to the differential
equation

y[5] + 6y[4] + 11y��� + 10y�� + 13y� + 3y = 0

then by� + cy is a solution to the differential equation

y[4] + 3y��� + 2y�� + 4y� + y = 0.

Use linear differential operators to find these values, WITHOUT plugging in directly OR solving
any system of equations.



6. (17 pts) In P2 we consider the bases S = {1, x, x2} and V = {1, (x−2), (x−2)2}. Let T : P2 → P2

be the linear transformation defined by T (p)(x) = d
dx

�
(x − 2)p(x)

�
(so, given a polynomial p,

multiply by (x− 2) and then take the derivative to get T (p)).

(a) Find the matrix M = [T ]VV .

(b) Find the change of basis matrices [I]SV and [I]SV .



(c) Use the results from the previous two parts to find the matrix A = [T ]SS .


