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No calculators.

All answers must be reasonably simplified.
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It is strongly advised that you use black pen only, since that will be most clear in scanning your work.
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1. (20 pts) Find a fundamental set of real solutions to the differential equation L(y) = 0 with
characteristic polynomial

p(λ) = (λ2 − 5λ+ 6)(λ− 3)2(λ3 + 8)
(
λ− (2− i)

)2(
λ− (2 + i)

)2
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(extra space for questions from other side)
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2. (20 pts) The following is a fundamental set of solutions to the differential equation L(y) = 0:{
e3x, xe3x, e4x, e2x cos 3x, e2x sin 3x, xe2x cos 3x, xe2x sin 3x,

}
Find the form (you do not have to evaluate the coefficients!) of a particular solution to the
differential equation

L(y) = 5x2e2x − 6e3x + xe2x cos 3x
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(extra space for questions from other side)

5



3. (20 pts) The differential equation L(z) = 3e2it has a particular solution zp = (2 + 2i)e2it. Find a
particular solution to the equation L(y) = cos(2t), and identify the gain and the phase shift in
this equation. (Show all of the algebra needed to justify your results!)
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(extra space for questions from other side)
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4. (20 pts) The list α = {v1, v2, v3} is a basis for the vector space V . The “coordinate function”
f : V → R3 is defined by f(v) = [v]α. Show (directly from the definition) that f is a linear
transformation. (This result was claimed in class, and used in question 5 from the first exam this
term; you may NOT cite those references here.)
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(extra space for questions from other side)
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5. (20 pts) The line L goes through the origin and is parallel to ~v1 = (1, 2, 2). Find the matrix M
that rotates points in R3 a quarter turn counterclockwise around L (as seen from above). (Hint
#1: ~v2 = (2, 1,−2) and ~v3 = (2,−2, 1) might help form a convenient basis. Hint #2: If the
columns of a matrix are all perpendicular, then the product with its transpose is diagonal.)
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