$\mathbf{EXAM}\ \mathbf{1}$

Math 216, 2019 Fall, Clark Bray.

Name:	Section:	Student ID:		
GENERAL RULES				
YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.				
No notes, no books, no calculators.				
All answers must be reasonably simplified.				
All of the policies and guidelines on the class webpage	es are in effect on	this exam.		
WRITING RULES				
Do not write anything near the staple – this will be co	ut off.			
Use black pen only. You may use a pencil for initial sk drawn over in black pen and you must wipe all erasur	_			
Work for a given question can be done ONLY on the son. Room for scratch work is available on the back of the end of this packet; scratch work will NOT be grade	f this cover page,			
DUKE COMMUNITY STA	NDARD STAT	EMENT		
"I have adhered to the Duke Community Sta	ndard in complet	ing this examination."		
Signature:				

1. (18 pts) Bob says that a complete row reduction (to its RREF, R) of the nonsingular matrix A is performed by left multiplication by the matrix G below.

$$G = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 5 \\ 0 & 2 & 9 \end{pmatrix}$$

(a) Is G actually a combination of row operations, or not?

(b) Find the matrix A^{-1} or show that it does not exist.

2. (18 pts) The reduced row echelon form for A is

$$R = \begin{pmatrix} 1 & 3 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

(a) Find the complete set of solutions to $A\vec{x} = \vec{0}$.

(b) Suppose A times the vector (1, 2, 3, 4) is (5, 6, 7). Find the complete set of solutions to $A\vec{x} = (5, 6, 7)$.

3. (14 pts) Use the arithmetic below to compute the determinant of the matrix M below without using cofactors or a row reduction.

$$\det \begin{pmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 3 & 1 & 1 \end{pmatrix} = -4, \quad \det \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix} = -1, \quad M = \begin{pmatrix} 1 & 6 & 2 \\ 2 & 5 & 1 \\ 3 & 4 & 1 \end{pmatrix}$$

4. (20 pts) Bob is hoping to be able to use vector space theorems to study L, the set of all positive-real-valued functions defined on \mathbb{R} , with operations \oplus and \otimes defined by

$$(f \oplus g)(x) = f(x)g(x)$$

 $(c \otimes f)(x) = |c|f(x)$

(a) Is the condition below satisfied? Prove or find a counterexample

$$u + (v + w) = (u + v) + w$$
 for all vectors u, v, w

(b) Is L a vector space? Prove or show a condition that is not satisfied.

5. (15 pts) Show that the plane 3x - 2y + z = 0 in \mathbb{R}^3 is a vector space.

6.	(15 pts) Suppose that p_1, p_2, p_3, p_4 are all quadratic (at most) polynomials. notion of dimension, show that this list must be linearly dependent.	Without using the