EXAM 3

Math 216, 2019 Spring, Clark Bray.

Name:	Section:	Student ID:
GENERAL RUI	LES	
YOU MUST SHOW ALL WORK AND EXPLAIN ALL I CLARITY WILL BE CONSIDERED IN GRADING.	REASONING TO	O RECEIVE CREDIT.
No notes, no books, no calculators.		
All answers must be reasonably simplified.		
All of the policies and guidelines on the class webpages ar	e in effect on thi	s exam.
WRITING RUI	LES	
Do not write anything on the QR codes or nearby print, o	or near the staple	<u>)</u> .
Use black pen only. You may use a pencil for initial sketches of diagrams, but the final sketch must be drawn over in black pen and you must wipe all erasure residue from the paper.		
Work for a given question can be done ONLY on the front on. Room for scratch work is available on the back of this the end of this packet; scratch work will NOT be graded.	_	-
DUKE COMMUNITY STANDA	ARD STATEM	IENT
"I have adhered to the Duke Community Standar	rd in completing	this examination."
Signature:		

- 1. (20 pts) The function $T: P_2 \to P_3$ is a linear transformation, and T(f) is defined as the unique antiderivative F of f with F(0) = 0. Let $S_2 = \{1, x, x^2\}$, $S_3 = \{1, x, x^2, x^3\}$, $\mathcal{V} = \{1+x, x+x^2, x^2\}$, $\mathcal{W} = \{1-x+3x^2, x+x^2-x^3, x^2-4x^3, 4x^3\}$.
 - (a) Compute $M = [T]_{\mathcal{S}_2}^{\mathcal{S}_3}$.

(b) Compute $[I]_{\mathcal{V}}^{\mathcal{S}_2}$ and $[I]_{\mathcal{W}}^{\mathcal{S}_3}$.

(c) The matrix $[T]_{\mathcal{V}}^{\mathcal{W}}$ can be written as QMR. Find either Q or Q^{-1} (whichever you prefer), and find either R or R^{-1} (whichever you prefer).

(d) Suppose we know that $[T(f)]_{w} = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 1 \end{pmatrix}$. Compute $[T]_{\mathcal{S}_{2}}^{\mathcal{S}_{3}}[f]_{\mathcal{S}_{2}}$ without finding f explicitly.

2. $(15 \ pts)$ Find the diagonalization (the resulting diagonal matrix AND the basis used to achieve it) of the matrix A below.

 $A = \begin{pmatrix} 8 & -10 \\ 3 & -3 \end{pmatrix}$

3. (15 pts) For v, w, x in the inner product space V, we are given the following information:

$$\begin{pmatrix} \langle v, v \rangle & \langle v, w \rangle & \langle v, x \rangle \\ & \langle w, w \rangle & \langle w, x \rangle \\ & & \langle x, x \rangle \end{pmatrix} = \begin{pmatrix} 5 & 2 & 3 \\ & 5 & 3 \\ & & 3 \end{pmatrix}$$

Compute the angle between v + w and x in V.

4. (15 pts) The basis \mathcal{V} for \mathbb{R}^3 consists of the three vectors below.

$$\vec{v}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} \quad \vec{v}_2 = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{-1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix} \quad \vec{v}_3 = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \end{pmatrix}$$

Find the coordinates of $\vec{x} = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}$ with respect to \mathcal{V} .

5. (20 pts) Find a fundamental set of real solutions to the system $\vec{y}' = M\vec{y}$.

$$M = \begin{pmatrix} 2 & -2 \\ 5 & 0 \end{pmatrix}$$

6. (15 pts) Find a fundamental set of real solutions to the system $\vec{y}' = B\vec{y}$.

$$B = \begin{pmatrix} 6 & 9 \\ -1 & 0 \end{pmatrix}$$

(Hint: (3,-1) is the only eigenvector. You may find a convenient use for the vector (1,0).)