EXAM 3

Math 216, 2018 Fall, Clark Bray.

Name:	Section:	_ Student ID:
GENERAI	L RULES	
YOU MUST SHOW ALL WORK AND EXPLAIN CLARITY WILL BE CONSIDERED IN GRADING		TO RECEIVE CREDIT.
No notes, no books, no calculators. Scratch paper is (2) it must be returned with the exam, and (3) it was		must be from the instructor,
All answers must be reasonably simplified.		
All of the policies and guidelines on the class webpa	ages are in effect on t	his exam.
WRITING	GRULES	
Do not write anything on the QR codes or near the	staple.	
Use black pen only. You may use a pencil for initial sketches of diagrams, but the final sketch must be drawn over in black pen and you must wipe all erasure residue from the paper.		
Work for a given question can ONLY be done on th on.	e front or back of the	e page the question is written

DUKE COMMUNITY STANDARD STATEMENT

"I have adhered to the Duke Com	nunity Standard in completing this examination."
Signature: _	

(Nothing on this page will be graded!)

- 1. (20 pts) The pair $\mathcal{F} = \{f_1, f_2\}$, with $f_1 = e^x + e^{-x}$ and $f_2 = e^x e^{-x}$, is a basis for the vector space V. Another basis for V is the pair $\mathcal{G} = \{g_1, g_2\}$, with $g_1 = e^x$ and $g_2 = e^{-x}$. The linear transformation $D: V \to V$ is defined by D(u) = u'.
 - (a) Find the change of basis matrix $[I]_{\mathcal{F}}^{\mathcal{G}}$.

(b) Find the matrix $[D]_{\mathcal{F}}^{\mathcal{F}}$ without explicitly computing the derivatives of f_1 and f_2 .

(c) What is the relationship in general between $x = [D(u)]_{\mathcal{F}}$ and $y = [D]_{\mathcal{G}}^{\mathcal{G}}[u]_{\mathcal{G}}$?

2. (15~pts) Find the diagonal matrix E and the invertible matrix M such that

$$M^{-1}EM = \begin{pmatrix} 7 & -2 \\ 15 & -4 \end{pmatrix}$$

3. (15 pts) Find the angle between the vectors f(x) = 1 and g(x) = x in the inner product space C[0,1] with the inner product defined by $\langle v,w\rangle = \int_0^1 xv(x)w(x)\,dx$.

4. (15 pts) Note that in the inner product space $C[0, 2\pi]$ with the usual inner product, the vectors $\cos x$ and $\sin x$ are orthogonal and each has magnitude $\sqrt{\pi}$.

Suppose that a vector f(x) is known to be a linear combination of $\cos x$ and $\sin x$. Find a formula to compute the coefficients a and b for which $f(x) = a \cos x + b \sin x$. (Be sure to explain your reasoning.)

5. (15 pts) Use the arithmetic given below to find a fundamental set of solutions to the system $\vec{y}' = A\vec{y}$.

 $A = \begin{pmatrix} 5 & -3 \\ -13 & 8 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 8 & 3 \\ 13 & 5 \end{pmatrix}$

6. (20 pts) Use the arithmetic given below to find a fundamental set of solutions to the system $\vec{y}' = B\vec{y}$.

$$\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 5 & -3 \\ -13 & 8 \end{pmatrix} \begin{pmatrix} B \end{pmatrix} \begin{pmatrix} 8 & 3 \\ 13 & 5 \end{pmatrix}$$