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1. (20 pts) The matrix A is row reduced to its reduced row echelon form R by the nonsingular
matrix E, both given below.

E =



3 1 0
2 0 1
1 2 3


 and R =



1 2 0 4
0 0 1 5
0 0 0 0




(a) Find the complete set of solutions to the system A�x = (3, 0,−1).

(b) Find condition(s) on the coordinates of �b = (b1, b2, b3) for the equation A�x = �b to have at
least one solution.



(extra space for question from other side)



2. (15 pts)

(a) Find the matrix L with the property that, for any 3 × 3 matrix M with rows M1,M2,M3,
the rows of LM are always M3 − 3M1,M1 + 2M2, 5M2 + 4M3.

(b) Find the matrix R with the property that, for any 3×3 matrix M with columns m1,m2,m3,
the columns of MR are always 4m1 + 5m2 + 6m3, 7m1 + 8m2 + 9m3,m1 −m2 −m3.



(extra space for question from other side)



3. (15 pts)

(a) Compute the determinant below with as little arithmetic as possible.

det




123 1 123 0
234 0 234 1
345 1 345 1
456 789 457 678




(b) The curve C parametrized by �x(t) = (3 sin t− 4 cos t, 5 sin t− 11 cos t) can be viewed as the
image of the more familiar curve (cos t, sin t) (which goes counterclockwise around the unit
circle) by way of a convenient function. Use this idea to compute the area enclosed by C
and decide if the parametrization goes around that area clockwise or counterclockwise.



(extra space for question from other side)



4. (15 pts) We know that

det




�v
�a
�w


 = 1

(a) Use multilinearity to compute det




3�v − 5�w
�a
�w




(b) Use multilinearity to compute det




4�v − 3�w
�a

5�v − 7�w






(extra space for question from other side)



5. (15 pts) Show that V = {f ∈ C2[0, 3]|f ��(1) = 0} is a vector space.



(extra space for question from other side)



6. (20 pts) Suppose that β = {�a,�b, �d} is a basis for a vector space V . Use coordinates to show that

the list {3�a− 2�b, 2�a+ 4�d,�b− �d} must be linearly independent.



(extra space for question from other side)




