EXAM 1

Math 216, 2018 Fall, Clark Bray.

Name:	Section:	Student ID:
GENERA	L RULES	
YOU MUST SHOW ALL WORK AND EXPLAIN CLARITY WILL BE CONSIDERED IN GRADIN		TO RECEIVE CREDIT.
No notes, no books, no calculators. Scratch paper (2) it must be returned with the exam, and (3) it v	. ,	t must be from the instructor,
All answers must be reasonably simplified.		
All of the policies and guidelines on the class webp	ages are in effect on	this exam.
WRITING	G RULES	
Do not write anything on the QR codes or near the	e staple.	
Use black pen only. You may use a pencil for initial drawn over in black pen and you must wipe all era	0	•
Work for a given question can ONLY be done on thom.	he front or back of the	ne page the question is written
DUKE COMMUNITY ST	CANDARD STAT	EMENT

"I have adhered to the Duke Community Standard in completing this examination."	
Signature:	

(Nothing on this page will be graded!)

1. $(20 \ pts)$ The matrix A is row reduced to its reduced row echelon form R by the nonsingular matrix E, both given below.

$$E = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{pmatrix} \quad \text{and} \quad R = \begin{pmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

(a) Find the complete set of solutions to the system $A\vec{x} = (3, 0, -1)$.

(b) Find condition(s) on the coordinates of $\vec{b} = (b_1, b_2, b_3)$ for the equation $A\vec{x} = \vec{b}$ to have at least one solution.

- 2. (15 pts)
 - (a) Find the matrix L with the property that, for any 3×3 matrix M with rows M_1, M_2, M_3 , the rows of LM are always $M_3 3M_1, M_1 + 2M_2, 5M_2 + 4M_3$.

(b) Find the matrix R with the property that, for any 3×3 matrix M with columns m_1, m_2, m_3 , the columns of MR are always $4m_1 + 5m_2 + 6m_3, 7m_1 + 8m_2 + 9m_3, m_1 - m_2 - m_3$.

- 3. (15 pts)
 - (a) Compute the determinant below with as little arithmetic as possible.

$$\det \begin{pmatrix} 123 & 1 & 123 & 0 \\ 234 & 0 & 234 & 1 \\ 345 & 1 & 345 & 1 \\ 456 & 789 & 457 & 678 \end{pmatrix}$$

(b) The curve C parametrized by $\vec{x}(t) = (3\sin t - 4\cos t, 5\sin t - 11\cos t)$ can be viewed as the image of the more familiar curve $(\cos t, \sin t)$ (which goes counterclockwise around the unit circle) by way of a convenient function. Use this idea to compute the area enclosed by C and decide if the parametrization goes around that area clockwise or counterclockwise.

$$\det \left(\begin{array}{c} \vec{v} \\ \vec{a} \\ \vec{w} \end{array} \right) = 1$$

(a) Use multilinearity to compute
$$\det \begin{pmatrix} 3\vec{v} - 5\vec{w} \\ \vec{a} \\ \vec{w} \end{pmatrix}$$

(b) Use multilinearity to compute
$$\det \left(\begin{array}{c} 4\vec{v} - 3\vec{w} \\ \vec{a} \\ 5\vec{v} - 7\vec{w} \end{array} \right)$$

5. (15 pts) Show that $V = \{ f \in C^2[0,3] | f''(1) = 0 \}$ is a vector space.

6. (20 pts) Suppose that $\beta = \{\vec{a}, \vec{b}, \vec{d}\}$ is a basis for a vector space V. Use coordinates to show that the list $\{3\vec{a}-2\vec{b}, 2\vec{a}+4\vec{d}, \vec{b}-\vec{d}\}$ must be linearly independent.