Disc.:

EXAM 3
Math 216, 2016-2017 Fall, Clark Bray.
You have 50 minutes.

No notes, no books, no calculators.

YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING
TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.
All answers must be simplified. All of the policies and guidelines
on the class webpages are in effect on this exam.

Good luck!
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1. (15 pts) We have bases V = {0}, U, U3} and W = {0}, W, w3} for R?, with the vectors (in terms
of the standard basis S) given by
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T is a linear transformation, and
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(a) Compute [T 113, and
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(b) Compute [T]S.
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2. (15 pts) Find all of the eigenvalues and eigenvectors of the matrix A below.
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3. (15 pts) Suppose that A is an invertible n x n matrix. Show that
(0, @) = (AV) - (Aw)

is an inner product on R"
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4. (20 pts) The 2 x 2 “Hessian matrix”

Jey Ty
is the matrix of second derivatives that is used in the second derivative test in multivariable
calculus. Recall that for functions f in C?, we have f,, = f,..

(a) Explain how you know that, for functions in C?, the Hessian matrix must be orthogonally
diagonalizable, with real eigenvalues A\; and As.
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(b) The second order behavior of f € C? near the point @ is described by the expression
(x - a) H(x — @). Use part (a) to show that this can be rewritten as \;2? + \y23, for some
Z = (z1,22). (Hint: Recall that orthogonal matrices preserve dot products.)
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(¢) In what way do the values z; and z; relate (¥ — @) to the eigenvectors of H?

2"‘5“(_"'“) MEanS -HMC\‘ X 'a) P%
(\)\e_ colwans d'c p ave Hhe éﬂ‘”‘“"\mﬂs UlJ_\TL , SP

@ ﬂ (%) < 282,

g'o 2, J%; &NM\E— CothqMA‘aS o-C (‘Q—B’:) w.r.'\'. Ve
e'\g)e“bs'\s U= ‘\7\:6,3_

4



5. (15 pts) The following arithmetic is given.
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Find a real fundamental set of solutions to the system 3’ = Ay.
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6. (20 pts) The matrix A has Jordan form J = [T}, by way of the Jordan basis V = {0}, 0, 03}
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Find a fundamental set of solutions to the system i’ = Ay.
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