EXAM 1

Math 216, 2015-2016 Spring, Clark Bray.
You have 50 minutes.
No notes, no books, no calculators.
YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.

All answers must be simplified. All of the policies and guidelines on the class webpages are in effect on this exam.

Good luck!

Name \qquad
Disc.: Number \qquad TA Day/Time \qquad

"I have adhered to the Duke Community Standard in completing this examination."

1. \qquad
Signature: \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad

Total Score \qquad (/100 points)

1. (20 pts) The system $(A \mid I)$ is row equivalent to

$$
\left(\begin{array}{llll|lll}
1 & 0 & 2 & 1 & 1 & 0 & 2 \\
0 & 1 & 3 & 5 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 3 & 2 & 3
\end{array}\right), \quad \text { and note that }\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 1 \\
3 & 2 & 3
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
-1 & -4 & 2 \\
0 & 3 & -1 \\
1 & 2 & -1
\end{array}\right)
$$

(a) Find the complete set of solutions to the system $A \vec{x}=\vec{b}_{1}$, where $\vec{b}_{1}=(-4,3,2)$.
(b) Your friend Bob says that in general the system $A \vec{x}=\vec{b}$ has solutions if and only if \vec{b} is a linear combination of $(-1,0,1)$ and $(-4,3,2)$. Is he right? Explain why or why not.
2. (20 pts) Use a row reduction to compute the inverse of the matrix A below, and to find elementary matrices E_{1}, E_{2}, E_{3} such that $A=E_{3} E_{2} E_{1}$.

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 4 & 0 \\
1 & 0 & 3
\end{array}\right)
$$

3. (16 pts) The three vectors below are the edge vectors of the parallelepiped P.

$$
\vec{v}_{1}=\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{l}
1 \\
1 \\
5
\end{array}\right)
$$

Q is the parallelepiped whose edge vectors are $A \vec{v}_{1}, A \vec{v}_{2}, A \vec{v}_{3}$, where A is given by

$$
A=\left(\begin{array}{lll}
3 & 2 & 3 \\
0 & 0 & 2 \\
3 & 5 & 4
\end{array}\right)
$$

Compute the volume of Q without computing its edge vectors.
4. (24 pts)
(a) Compute the determinant of the matrix below with as little arithmetic as possible.

$$
\left(\begin{array}{ccccc}
4 & 3 & 5 & 0 & 2 \\
1 & 6 & 12 & 3 & 11 \\
0 & 2 & 0 & 0 & 0 \\
4 & 2 & 5 & 0 & 2 \\
5 & 1 & 4 & 0 & 2
\end{array}\right)
$$

(b) The matrix M below has determinant equal to 2 . Compute the number in the 3rd row and 4th column of M^{-1}.

$$
M=\left(\begin{array}{cccc}
2 & 1 & 31 & 5 \\
0 & 1 & 12 & 3 \\
1 & 1 & 10 & 8 \\
23 & 15 & 565 & 10
\end{array}\right)
$$

5. (20 pts) Prove that if a list of vectors $\vec{v}_{1}, \ldots, \vec{v}_{4} \in \mathbb{R}^{4}$ is linearly dependent, then that list cannot $\operatorname{span} \mathbb{R}^{4}$.
