## EXAM 2

Math 216, 2015-2016 Fall, Clark Bray.
You have 50 minutes.
No notes, no books, no calculators.
YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING
TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.
All answers must be simplified. All of the policies and guidelines on the class webpages are in effect on this exam.

Good luck!

Name $\qquad$
Disc.: Number $\qquad$ TA $\qquad$ Day/Time $\qquad$

"I have adhered to the Duke Community Standard in completing this examination."

1. $\qquad$
Signature: $\qquad$
2. $\qquad$
3. $\qquad$
4. $\qquad$
5. $\qquad$

Total Score $\qquad$ (/100 points)

1. (20 pts) Bob is interested in finding a fundamental set of solutions to the linear differential equation $L(y)=0$. The equation is third order, and satisfies the conditions of the existence/uniqueness theorem. By trial and error Bob has found solutions $p(x), q(x), r(x)$, and $s(x)$, and he has computed that

$$
A=\left(\begin{array}{cccc}
p(0) & q(0) & r(0) & s(0) \\
p^{\prime}(0) & q^{\prime}(0) & r^{\prime}(0) & s^{\prime}(0) \\
p^{\prime \prime}(0) & q^{\prime \prime}(0) & r^{\prime \prime}(0) & s^{\prime \prime}(0)
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 3 \\
2 & 1 & 0 & 2 \\
1 & 3 & 5 & 0
\end{array}\right)
$$

(a) What is the dimension of the set of solutions to this differential equation? Explain what specifically about the given information allows you to draw this conclusion.
(b) Bob is considering the possibility that $\{p, q, s\}$ might be a fundamental set of solutions. Compute the value of the Wronskian, at $x=0$, for this list of functions. Is this a fundamental set of solutions?
(c) What are the initial values (at $x=0$ ) of the function $f(x)=p(x)-2 q(x)+r(x)$ ? What are the inital values of the function $z(x)=0$ ? What then does the existence/uniqueness theorem then tell us about $f$, and what does this tell us about the question of whether $\{p, q, r\}$ might be a fundamental set of solutions?
2. (20 pts) Find a fundamental set of solutions to the differential equation

$$
y^{\prime \prime \prime}(x)+5 y^{\prime \prime}(x)+4 y^{\prime}(x)-10 y(x)=0
$$

3. (20 pts) Find the form (but do NOT evaluate the coefficients!) of a particular solution to the differential equation

$$
y^{\prime \prime \prime}(x)+9 y^{\prime}(x)=x^{2}-x \cos 3 x
$$

4. (20 pts) The general solution to the differential equation describing the motion of a particular mass on a particular spring is

$$
y(t)=c_{1} \cos 3 t+c_{2} \sin 3 t+5 \sin 2 t
$$

(a) Find the solution $y_{1}$ that satisfies the initial condition $y_{1}(0)=1, y_{1}^{\prime}(0)=7$.
(b) Rewrite the above solution $y_{1}$ as the sum of two sinusoids of different frequency.
(c) Rewrite the (different) solution $y_{2}=5 \sin 3 t+5 \sin 2 t$ as a product of two sinusoids.
5. (20 pts) In this question we consider the vector space $V$ with basis $\mathcal{V}=\{\sin x, \cos x\}$, and the alternative basis $\mathcal{W}=\{\sin x-\cos x, \sin x+\cos x\}$.
(a) Find the change of basis matrices $[I]_{\mathcal{V}}^{\mathcal{W}}$ and $[I]_{\mathcal{W}}^{\mathcal{W}}$.
(b) Compute $\left[D^{2}-3\right]_{\mathcal{V}}^{\mathcal{V}}$.
(c) Use the previous parts of this question to compute $\left[D^{2}-3\right]_{\mathcal{W}}^{\mathcal{W}}$.

