EXAM 3

Math 107, 2011-2012 Fall, Clark Bray.
You have 50 minutes.
No notes, no books, no calculators.
YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING. All answers must be simplified. All of the policies and guidelines on the class webpages are in effect on this exam.

Good luck!

Name \qquad
ID number \qquad
"I have adhered to the Duke Community Standard in completing this examination."

1. \qquad
Signature: \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad

Total Score \qquad (/100 points)

1. (20 pts) Compute all of the eigenvalues and eigenvectors for the matrix

$$
\left(\begin{array}{cc}
11 & -18 \\
3 & -4
\end{array}\right)
$$

2. (20 pts) Determine if the following vector-valued functions are linearly independent or linearly dependent:

$$
\vec{y}_{1}(x)=\left(\begin{array}{c}
e^{x} \\
3 e^{x} \\
-2 e^{x}
\end{array}\right) \quad \text { and } \quad \vec{y}_{2}(x)=\left(\begin{array}{c}
2 e^{4 x} \\
-e^{4 x} \\
e^{4 x}
\end{array}\right) \quad \text { and } \quad \vec{y}_{3}(x)=\left(\begin{array}{c}
e^{3 x} \\
e^{3 x} \\
7 e^{3 x}
\end{array}\right)
$$

3. (20 pts) Find a fundamental set of solutions to the system $\vec{y}^{\prime}=A \vec{y}$, where

$$
A=\left(\begin{array}{lll}
5 & -3 & 1 \\
3 & -2 & 2 \\
3 & -5 & 5
\end{array}\right)
$$

You may use the fact that the Jordan form for A and the corresponding Jordan basis (in the corresponding order) are given by

$$
J=\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \quad \text { and } \quad\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
3 \\
3
\end{array}\right)\right\}
$$

4. (20 pts) Find the Jordan form and a Jordan basis for the matrix

$$
A=\left(\begin{array}{cc}
14 & -16 \\
9 & -10
\end{array}\right)
$$

5. (20 pts) Find a particular solution to the system of equations

$$
\begin{aligned}
y_{1}^{\prime} & =y_{2}+x+1 \\
y_{2}^{\prime} & =y_{1}+2 x-1
\end{aligned}
$$

