EXAM 2

Math 107, 2010-2011 Spring, Clark Bray.
You have 50 minutes.
No notes, no books, no calculators.
YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.

All answers must be simplified. All of the policies and guidelines on the class webpages are in effect on this exam.

Good luck!

Name \qquad
ID number \qquad

1. \qquad
"I have adhered to the Duke Community Standard in completing this
2. \qquad Signature: \qquad
3. \qquad
4. \qquad examination."
5. \qquad
6. \qquad

Total Score \qquad (/100 points)

1. (15 pts) The matrix A and its reduced row echelon form R are given below. Find bases for the nullspace of A, the row space of A, and the column space of A.

$$
A=\left(\begin{array}{cccccc}
1 & 5 & 23 & 3 & 25 & 2 \\
5 & -2 & 7 & 4 & 32 & 9 \\
0 & 8 & 32 & 3 & 26 & 6 \\
10 & 1 & 34 & 2 & 33 & 6
\end{array}\right) \quad R=\left(\begin{array}{cccccc}
1 & 0 & 3 & 0 & 2 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

2. (15 pts) Suppose you deposit $\$ 100$ per month continuously into an account that earns 5% per year. You begin this process upon the birth of your first child, and stop on that child's 18th birthday to make the account a birthday present. What will be the final balance in the account?
3. (20 pts) Suppose that $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are in the vector space V, and $T: V \rightarrow W$ is a linear transformation. Show that if $\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{n}\right)\right\}$ is linearly independent in W, then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ must be linearly independent in V.
4. (20 pts) Find a real fundamental set of solutions to the fourth order differential equation

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}-8 y^{\prime}+5 y=0
$$

5. (15 pts) Find a particular solution to the differential equation

$$
y^{\prime \prime}-7 y^{\prime}+12 y=e^{3 x}
$$

6. (15 pts) Bob likes to sing in the shower, but he is frustrated by the gain he experiences at the shower's natural frequency of ω_{0}. He is considering purchasing sound deadening material for the ceiling of the shower, with an "absorbance factor" (at his natural frequency) of k / ω_{0}, which will change the differential equation describing the vibrations to

$$
u^{\prime \prime}+\frac{k}{\omega_{0}} u^{\prime}+\omega_{0}^{2} u=a \cos \omega_{0} t
$$

where the function $a \cos \omega_{0} t$ represents his voice when he sings at the natural frequency.
If Bob wants the gain at the natural frequency to be at most 1.2 , what minimum value of k does he require?

