EXAM 2

Math 107, 2010-2011 Fall, Clark Bray.
You have 50 minutes.
No notes, no books, no calculators.
YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.

All answers must be simplified. All of the policies and guidelines on the class webpages are in effect on this exam.

Good luck!

Name \qquad
ID number \qquad

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
\qquad (/100 points)
8. (15 pts) In class we showed that rotations around the origin in \mathbb{R}^{2} are linear transformations. We also showed that the matrix for a composition of linear transformations is the product of the corresponding matrices. Use these facts to prove the angle addition formulas for the sin and cos functions.
9. (15 pts) Find a fundamental set of real solutions to the differential equation below.

$$
y^{\prime \prime \prime \prime}-8 y^{\prime \prime \prime}+25 y^{\prime \prime}-36 y^{\prime}+20 y=0
$$

(Hint: You might make use of the fact that $y=e^{2 x} \sin (x)$ is a solution.)
3. (15 pts) Show that the functions $x, e^{x}, \sin x$, and $\cos x$ form a linearly independent set of functions in C^{0}.
4. (15 pts) A mass is intended to be placed on a spring in a resistive medium. The mass will be moved from the natural position and released, and then no external forces will act on the system.

The spring to be used exerts a force of 10 N when stretched 0.25 m from its natural length, and the resistance in the medium is 25 N when the mass is moving at a speed of $0.5 \mathrm{~m} / \mathrm{s}$. (Recall that $1 N=1 \mathrm{kgm} / \mathrm{s}^{2}$.)
What is the largest mass that can be used in this system without having oscillations in the resulting motion?
5. (15 pts) Find a particular solution to the differential equation below.

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=e^{-x}
$$

(Hint: Factor the characteristic polynomial by recalling Pascal's triangle.)
6. (20 pts) The linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented in the standard basis by the matrix $A=[T]_{\mathcal{S}}^{\mathcal{S}}$. We know also that

$$
A\left[\begin{array}{l}
7 \\
4
\end{array}\right]=\left[\begin{array}{l}
6 \\
2
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
5
\end{array}\right]
$$

Use the matrix for T with respect to convenient bases to compute the matrix A.

