EXAM 3

Math 107, 2009-2010 Spring, Clark Bray.
You have 50 minutes.
No notes, no books, no calculators.
YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.

All answers must be simplified. All of the policies and guidelines on the class webpages are in effect on this exam.

Good luck!

Name \qquad
ID number \qquad

Total Score \qquad (/100 points)

1. (20 pts) Find the matrix A that satisfies the equations

$$
A\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-3 \\
0
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-4 \\
-1
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
-1
\end{array}\right]
$$

2. (20 pts) Prove that if A is an orthogonal matrix, then $A^{T}=A^{-1}$.
3. (20 pts) Find a fundamental set of solutions to the system of equations

$$
\vec{y}^{\prime}=A \vec{y} \quad \text { where } \quad A=\left(\begin{array}{ccc}
0 & -4 & 2 \\
-1 & -5 & 2 \\
-4 & -23 & 9
\end{array}\right)
$$

(You may use the fact that the characteristic polynomial of A is $p(\lambda)=(\lambda-1)^{2}(\lambda-2)$. Two vectors of interest might be $(2,0,1)$ and $(3,1,5)$.)
4. (20 pts) Find the general solution to the system of equations below.

$$
\begin{aligned}
y_{1}^{\prime} & =-y_{1}+2 y_{2}+4 \\
y_{2}^{\prime} & =-6 y_{1}+6 y_{2}+\sin (x)
\end{aligned}
$$

5. (20 pts) Find a first order system of linear differential equations whose solution would also give the solution to the system below. Indicate clearly the relationship between the functions described in each system.

$$
\begin{aligned}
y_{1}^{\prime \prime \prime} & =2 y_{1}^{\prime \prime}-y_{2}+3 y_{2}^{\prime} \\
y_{2}^{\prime \prime \prime} & =4 y_{1}+2 y_{2}^{\prime}-y_{2}^{\prime \prime}
\end{aligned}
$$

