EXAM 1

Math 212, 2023 Summer Term 2, Clark Bray.

Name:	Section:	Student ID:
GENERAL	RULES	
YOU MUST SHOW ALL WORK AND EXPLAIN A CLARITY WILL BE CONSIDERED IN GRADING.		G TO RECEIVE CREDIT.
No notes, no books, no calculators.		
All answers must be reasonably simplified.		
All of the policies and guidelines on the class webpage	es are in effect on	this exam.
WRITING	RULES	
Do not remove the staple, tear pages out of the stap Do not write anything near the staple – this may be of	· -	h the exam packet in any way.
Use black pen only. You may use a pencil for initial sl drawn over in black pen and you must wipe all erasur		,
Work for a given question can be done ONLY on the on. Room for scratch work is available on the back of the end of this packet; scratch work will NOT be gradent.	f this cover page,	
DUKE COMMUNITY STA	NDARD STAT	EMENT
"I have adhered to the Duke Community Sta	andard in complet	ing this examination."
Signature:		

1	(25	pts
т.	(20	$p \iota s$

(a) Show that the vectors $\vec{a}=(2,3,6)/7$ and $\vec{b}=(3,-6,2)/7$ are orthogonal unit vectors.

(b) Use methods from this course to find a third unit vector \vec{c} such that all of \vec{a} , \vec{b} , \vec{c} are orthogonal to each other.

(c) Find an equation for the plane P that is parallel to \vec{a} and \vec{b} and contains $\vec{d} = (1, 1, 1)$.

(d) Find a parametrization for the plane P.

- 2. (20 pts)
 - (a) A curve parametrized by $\vec{x}(t)$ has velocity $\vec{v}(t) = (e^t, \sin(3t), 6t^2)$ and starts at $\vec{x}(0) = (1, 2, 3)$. Find an explicit expression for $\vec{x}(t)$.

(b) The surface S has equation $y^2 - x^2 - z^2 + 1 = 0$. It can be viewed as a rotation around an axis A of a curve C in a plane P. Identify A and P, and find an equation for C.

(c) The surface M has equation $2y^2 - (x-3)^2 - (z+4)^2 + 1 = 0$. Describe a geometric process that would turn S into M.

- 3. (20 pts)
 - (a) The surface S has equation $xe^x xy + y^2z + z = 15$. Find a function f (domain, target, formula) whose graph is S.

(b) The plane y=2 intersects S in a curve C that includes the point $\vec{p}=(0,2,3)$. Use the function f from (a) to find the slope of the tangent line to C at \vec{p} .

(c) Find a vector perpendicular to S at \vec{p} .

- 4. (15 pts) The physical quantity described by the variable z is easier to compute with in terms of variables s and t, but the Laplacian describing its behavior in the physical world must be in terms of x and y. Specifically we have z = f(s,t) (f is C^2), s = 2x 3y, and t = x 5y.
 - Find a fully simplified expression for the Laplacian $\Delta f = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$ that is entirely in terms of z and its various partials with respect to s and t.

5.	(20 pts) Map location in a given region is described by x and y , and altitude is
	$z = h(x,y) = x^3 - xy$. At a given moment you are at the point $\vec{p} = (1,2)$ and moving in the
	direction parallel to $\vec{v} = (3, 4)$.

(a) What is your rate of change of altitude with respect to distance travelled in that direction?

(b) At \vec{p} , what direction points directly uphill?

(c) How steep is the ground at \vec{p} ?