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1. (18 pts) We consider the vectors v = (1,3,0), @ = (0,2,1), @ = (1,0, 1).

) Find the vector & = kv’ (where k is constant) for which Z — w0 is orthogonal to .

Ne. ned. (o7-)
k(3w ~ el = 0 Sy %=
S —J 5 TR

) Compute the volume of the paralleleplped with edge vectors v, W, u.
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(c) There are six ways to order the vectors U, w, @. Identify which of these six are right-
hand orders with a brief explanation. (For full credit you must do this with no redundant
arithmetic.)
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2. (18 pts) The curve C' is entirely within a single plane P, parametrized with position given as Z(t),
and with velocity (¢) and acceleration a(t).

(a) Suppose we know only that #(0) = (2,—-1,0), ¥(0) = (—1,0,1), and a@(0) = (-2,—1,3).
Find the equation of the plane P. (Hint: What relationship must ¥ and a have with P?)
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(b) Suppose we know further that 0(t) = (—2sint —cost,cost—e’, e’ +2sint). Find expressions
for Z(t) and a(t).
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3. (16 pts)

(a) The curve C is parametrized by Z(t) = (1 — t,2t,3t). Find the equation of the surface S
obtained by rotating C' around the z-axis. (Hint: Find an expresszon for distance from a
point on this parametrized curve to the z-axis, as a function of z.)
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(b) The curve P is parametrized by Z(t) = (2 +¢,3 — t,e’). The surface R is formed by all of
the translations of P in the y-direction (by vectors of the form (0, k,0)). Find a function f
whose graph is R. T\%
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4. (18 pts) In this question we consider the function f : R?® — R! given by f(z,y,2) = zy + ¥

(a) Based on knowledge from the lectures, explain why f is continuously differentiable, noting
all important details in the argument.
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(b) Find a function h of the form h(z,y, z) = ¢ + cox + c3y + ¢4z that has the same value and
partial derivatives as f at the point (3,1,0).
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5. (18 pts)

(a) The function p : R* — R3 is given by p(x,y, 2) = (ze¥,y — zcosx, xz — sin z). A particle in
the domain is moving as described by Z(t) = (x(t),y(t), 2(t)) = (1 —t,2+1t,3+4t). Find the
velocity of the image p(Z(t)) at t = 0 WITHOUT finding an explicit expression for p(Z(t)).
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(b) The variable w is a twice continuously differentiable function of z, y, and z. Also, z, y, and
z (unrelated to part (a) above) are functions of s and ¢ given as x = s — ¢, y = 2s + ¢, and
z = 3t — s. Find a fully simplified expression for
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6. (12 pts) You are standing at a certain point @ on a smooth hill. As you face in the direction d;
(see the figure above) the slope in that direction is 0.3 uphill; as you face in the direction dy the

slope in that direction is 0.2 downhill.
Suppose that from this point you start walking in the direction d3. How steep will your path on
the hill be initially?
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