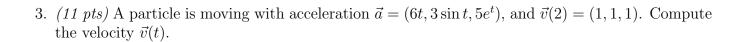
$\mathbf{EXAM}\ \mathbf{1}$

Math 212, 2020 Spring, Clark Bray.

Name:	Section:	Student ID:
GENERAL RULES		
YOU MUST SHOW ALL WORK AND EXPLAIN A CLARITY WILL BE CONSIDERED IN GRADING.	LL REASONING	G TO RECEIVE CREDIT.
No notes, no books, no calculators.		
All answers must be reasonably simplified.		
All of the policies and guidelines on the class webpage	es are in effect on	this exam.
WRITING I	RULES	
Do not write anything near the staple – this will be cu	ut off.	
Use black pen only. You may use a pencil for initial sk drawn over in black pen and you must wipe all erasur	_	
Work for a given question can be done ONLY on the son. Room for scratch work is available on the back of the end of this packet; scratch work will NOT be grade	f this cover page,	
DUKE COMMUNITY STAI	NDARD STAT	EMENT
"I have adhered to the Duke Community Sta	ndard in complet	ing this examination."
Signature:		


- 1. (27 pts) The force on a particle P_1 of charge q moving with velocity \vec{v} through a magnetic field \vec{B} is given by $\vec{F} = q\vec{v} \times \vec{B}$.
 - (a) In certain units, a particle has charge times velocity of $q\vec{v}=(4,1,2)$ in a magnetic field $\vec{B}=(1,2,3)$. Compute the force on this particle.

(b) Take the derivative of the equation $\|\vec{v}\|^2 = \vec{v} \cdot \vec{v}$ and recall that $\vec{F} = m\vec{a}$ to show that magnetic force does not change the speed of the particle.

(c) If a positively-charged particle P_2 enters a magnetic field that points uniformly upward with a velocity perpendicular to the field, the result is that the particle moves in a horizontal circle. As seen from above, is the motion around that circle clockwise or counterclockwise? (You may explain your reasoning in words and/or pictures.)

- 2. (22 pts)
 - (a) Find the equation of the plane P that contains the points (1,1,1) and (3,4,5) and that is parallel to the line parametrized by $\vec{x}(t) = (2-4t,3t-1,t+2)$.

(b) Parametrize the line described by the equations 2x - 6 = 3y + 1 = 4z.

4. (16 pts)

- (a) The surface S with equation $\frac{(x+2)^2}{3} + y^2 5z^2 = 1$ can be obtained from the surface M with equation $x^2 + y^2 z^2 = 1$ by applying the sequence of geometric transformations below.
 - i. Translate in the x-direction by A;
 - ii. Stretch in the x-direction by the factor B;
 - iii. Stretch in the z-direction by the factor C.

Find the values A, B, C.

(b) Identify the surface M.

- 5. (24 pts)
 - (a) The graph of $f(x, y, z) = x^3 y^2 + z$ is a level set of the function g. Identify the domain and the target of such a function g and give a formula for it.

(b) The level set h = 0 of the function h(x, y, z) = 3x - 2y + 4z is the graph of a function m. Identify the domain and the target of such a function m and give a formula for it.

(c) Parametrize the graph of the function f(x) = 3 - 2x.