$\mathbf{EXAM}\ \mathbf{1}$

Math 212, 2019 Fall, Clark Bray.

Name:	_ Section:	Student ID:
GENERAL E	RULES	
YOU MUST SHOW ALL WORK AND EXPLAIN AI CLARITY WILL BE CONSIDERED IN GRADING.	LL REASONING	G TO RECEIVE CREDIT.
No notes, no books, no calculators.		
All answers must be reasonably simplified.		
All of the policies and guidelines on the class webpages	s are in effect on	this exam.
WRITING F	RULES	
Do not write anything near the staple – this will be cu	at off.	
Use black pen only. You may use a pencil for initial skedrawn over in black pen and you must wipe all erasure		•
Work for a given question can be done ONLY on the form. Room for scratch work is available on the back of the end of this packet; scratch work will NOT be grade	this cover page,	
DUKE COMMUNITY STAN	NDARD STAT	EMENT
"I have adhered to the Duke Community Star	ndard in complet	ing this examination."
Signature:		

1. (20 pts

(a) Find the area of the parallelogram defined by $\vec{v} = (1, 2, 0)$ and $\vec{w} = (3, 0, 4)$.

(b) Compute the angle between \vec{v} and \vec{w} .

(c) The plane -8x + 4y + 6z = 5 passes through a point whose position vector is \vec{x}_0 . Is the list \vec{x}_0 , \vec{v} , \vec{w} in right hand order or left hand order, or neither? (Hint: Consider how you can use some of the work from part (a). And be sure to explain your reasoning!)

2.	(20	pts)	Α.	particle	has init	ial p	osition	$\vec{x}_0 =$	(1, 2,	3) a	nd velo	city	given	by a	$\vec{v}(t) =$	$6t^2$	$3e^t$.	$4\sin i$	t)
⊿.	(~0	$\rho \omega j$	1 L	particic	11000 11111	iai p	Obludii .	$\omega_0 -$	$(\bot, \bot,$	σ_{j} α	na vero	CIUy	811011	O.y 1	v(v) —	OU	, oc,	1 011	

(a) Find an expression for the acceleration of the particle as a function of time.

(b) Find an expression for the position of the particle as a function of time.

- 3. (20 pts) The surface S has equation $x^2 + (2y 4)^2 z^2 = 1$. Describe S by identifying
 - (a) a rotationally symmetric surface R (and explain how you know what R looks like); and
 - (b) a sequence of geometric transformations that turn R into S.

- 4. (20 pts)
 - (a) Find an equation for the graph of the function $f: \mathbb{R}^3 \to \mathbb{R}^1$ defined by $f(v, w, x) = v^2 w w x^3$.

(b) Find a function $h: \mathbb{R}^n \to \mathbb{R}^m$ for which one of the level sets is the sphere with equation $(x+1)^2 + y^2 + z^2 = 9$, and identify the corresponding values of n and m.

(c) Identify a level set of the function g (defined by $g(x,y) = (y-x^2)^2$) that is also the graph of another function $p: \mathbb{R}^a \to \mathbb{R}^b$, and identify that other function p and the values a and b.

5. (20 pts)

(a) We are given that $z = x^2 - y^2$, x = 3r + 2s, and y = r - 5s. Find an expression for $\frac{\partial z}{\partial s}$ in terms of the partials of z with respect to x and y. Reminder – do NOT plug in to find z explicitly as a function of r and s!

(b) Suppose now that $r = 2\cos t$ and $s = 3\sin t$. Compute the value of $\frac{dz}{dt}$ when t = 0. (Hint: Evaluate $\frac{dr}{dt}(0)$ first.)