EXAM 2

Math 212, 2017-2018 Spring, Clark Bray.
You have 50 minutes.
No notes, no books, no calculators.
YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.

All answers must be simplified. All of the policies and guidelines on the class webpages are in effect on this exam.

Good luck!

Name \qquad

> "I have adhered to the Duke Community
> Standard in completing this
> examination."

1. \qquad
Signature: \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad

Total Score \qquad (/100 points)

1. (20 pts) Let f be a function of the rectangular coordinates x, y, and z, and let ρ, ϕ, and θ be the usual spherical coordinates.
(a) Find an expression for $\frac{\partial f}{\partial \rho}$ in terms of the rectangular partials of f and the spherical coordinates.
(b) Find an expression for $\frac{\partial^{2} f}{\partial \rho^{2}}$ in terms of the rectangular partials of f and the spherical coordinates.
2. (20 pts) The solid triangle T in the $x y$-plane has vertices $(-1,1),(0,3)$, and $(1,1)$. A total mass of $m=10 / 3$ is distributed over this area as indicated by the density function $\delta=y$. Compute the coordinates \bar{x} and \bar{y} of the centroid of this mass.
3. (20 pts) The solid R is bounded by the surfaces with equations $x-2 y^{2}-2 z^{2}+2=0$ and $x+y^{2}+z^{2}=1$. Mass is distributed in this solid with density given by $\delta(x, y, z)=e^{x-y}$.
Set up as an iterated triple integral the moment of inertia of this solid around the y-axis. (You do NOT have to compute the integral.)
4. (20 pts) The ellipses E_{1} and E_{2} in the $x y$-plane have equations below.

$$
E_{1}:\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{1}\right)^{2}=1 \quad \text { and } \quad E_{2}:\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1
$$

The region between these two ellipses is M. Compute $\iint_{M} x^{2} d x d y$. (Hint: Use a change of variables, followed by another technique.)
5. (20 pts) The sphere S_{1} is the unit sphere centered at the origin, and the sphere S_{2} is the unit sphere centered at $(1,0,0)$. The solid D consists of the points that are outside of S_{1} and inside of S_{2}.
Set up $\iiint_{D} x d V$ as an iterated triple integral in spherical coordinates. (You do NOT have to compute the integral.)

