EXAM 1

Math 212, 2016-2017 Fall, Clark Bray.

You have 50 minutes.

No notes, no books, no calculators.

YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.

All answers must be simplified. All of the policies and guidelines on the class webpages are in effect on this exam.

		Good luck!	
	Name	Solutions	
		Standard in o	the Duke Community completing this nation."
1.	, and the second	Q.	
2		Signature:	
3.	····		
4	· · · · · · · · · · · · · · · · · · ·		
5			
		Total Score	(/100 points)

- 1. (20 pts) The cross product $\vec{a} \times \vec{b}$ is the vector (2,1,3).
 - (a) Compute the area of the parallelogram defined by \vec{a} and \vec{b} .

area =
$$\|\vec{a} \times \vec{b}\| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14}$$

(b) Compute the volume of the parallelepiped defined by \vec{a} , \vec{b} , and $\vec{c} = (1, -5, 2)$.

$$V = \left| \overrightarrow{c}, \left(\overrightarrow{a} \times \overrightarrow{b} \right) \right| = \left| \left(\frac{1}{-5}, \left(\frac{2}{3} \right) \right| = 3$$

(c) Is the list \vec{b} , \vec{c} , \vec{a} in right-hand order or left-hand order?

$$b.(c \times a) = c.(a \times b) = 3 > 0$$

 $5. b.c.a$ is in RHO.

(d) Find the equation of the plane parallel to \vec{a} and \vec{b} that passes through the point (1,1,1).

$$\vec{a} \times \vec{b} = (2,1,3)$$
 is $\vec{b} = (3,1,3)$ i

2. (20 pts) The velocity of the parametric curve $\vec{x}(t)$ is given by $\vec{v}(t) = (2\sin(3t), 4e^{2t})$, and a momentary position is $\vec{x}(0) = (4, 5)$.

(a) Find the position
$$\vec{x}(2)$$
.

$$\vec{x}(t) = \vec{\nabla}(t) dt = \begin{pmatrix} -\frac{2}{3} \cos(3t) \\ 2e^{2t} \end{pmatrix} + \vec{C}$$

$$\vec{a} t = 0 : \qquad (4) = \begin{pmatrix} -\frac{2}{3} \\ 5 \end{pmatrix} + \vec{C} \implies \vec{C} = \begin{pmatrix} 14/3 \\ 3 \end{pmatrix}$$

$$\vec{x}(t) = \begin{pmatrix} 4/5 \\ 5/7 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} \cos(3t) + 14/3 \\ 2e^{2t} + 3 \end{pmatrix}$$

$$\vec{x}(t) = \begin{pmatrix} -\frac{2}{3} \cos(6t) + 14/3 \\ 2e^{4t} + 3 \end{pmatrix}$$

$$\vec{x}(t) = \begin{pmatrix} -\frac{2}{3} \cos(6t) + 14/3 \\ 2e^{4t} + 3 \end{pmatrix}$$

(b) Find the acceleration and the curvature at time t = 0.

$$\vec{a}(x) = \vec{y}'(x) = \begin{pmatrix} 6 \cos(3x) \\ 8e^{2x} \end{pmatrix}$$

$$\vec{a}(0) = \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \quad \vec{a}(0) = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$$

$$\vec{a}(0) = \begin{pmatrix} 6 \\ 8$$

- 3. (20 pts) The surface S has equation $x^3 2y^2 3z = 12$.
 - (a) Can S be viewed as a graph of some function $f: \mathbb{R}^a \to \mathbb{R}^b$? If so, identify a, b, and the formula for evaluating the function f.

(b) Can S be viewed as a level set of some function $g: \mathbb{R}^c \to \mathbb{R}^d$? If so, identify c, d, and the formula for evaluating the function q.

formula for evaluating the function
$$g$$
.

This is the level set $g = 12$ of $g: \mathbb{R}^3 \to \mathbb{R}^4$

defined by
$$g(x,y,z) = x^3 - 2y^2 - 3z$$

$$g(x, y, z) = x^3 - 2y^2 - 3z$$

(c) Is the parametric curve $\vec{x}(t) = (-t^2, t^3, -t^6 - 4)$ contained in S?

With
$$x=-t^2$$
, $y=t^3$, $z=-t^6-4$, the equation for S is satisfied:

$$\chi^{3}-24^{2}-32=(-\chi^{2})^{3}-2(\chi^{3})^{2}-3(-\chi^{6}-4)$$

= $-\chi^{6}-2\chi^{6}+3\chi^{6}+12$

4. (20 pts) Does the limit below exist? If it does, compute the value; if it does not, show that it does not.

$$= \lim_{\substack{(x,y)\to(0,0)}} \frac{x^2y^3 - 5xy^4}{x^4 + 2x^2y^2 + y^4}$$

$$= \lim_{\substack{(x,y)\to(0,0)}} \frac{x^2y^3 - 5xy^4}{x^4 + 2x^2y^2 + y^4}$$

$$= \lim_{\substack{(x,y)\to(0,0)}} \frac{x^2y^3 - 5xy^4}{x^4 + 2x^2y^2 + y^4}$$

$$= \lim_{\substack{(x,y)\to(0,0)}} \frac{x^2y^3 - 5xy^4}{x^4 + 2x^2y^2 + y^4}$$

$$= \lim_{\substack{(x,y)\to(0,0)}} \frac{x^2y^3 - 5xy^4}{x^4 + 2x^2y^2 + y^4}$$

5. (20 pts) We have w = w(p,q), p = ab, and q = 2a + 3b. Use the chain rule to write a fully simplified expression for $\frac{\partial^2 w}{\partial a \partial b}$.

$$\frac{\partial W}{\partial b} = \frac{\partial \phi}{\partial b} + \frac{\partial \phi}{\partial b} + \frac{\partial \phi}{\partial b} = \frac{\partial \phi}{\partial b}$$

$$= aWp + 3Wg$$

$$\frac{\partial}{\partial a} \left(\frac{\partial w}{\partial b} \right) = \frac{\partial}{\partial a} \left(awp + 3w_b \right)$$

$$= \left(\frac{\partial}{\partial a}(a) \omega_p + a \left(\frac{\partial}{\partial a}(\omega_p)\right) + 3 \frac{\partial}{\partial a}(\omega_p)\right)$$

$$= W_p + a \left(\frac{\partial w_p}{\partial p} \frac{\partial p}{\partial a} + \frac{\partial w_p}{\partial g} \frac{\partial g}{\partial a} \right) + 3 \left(\frac{\partial w_g}{\partial p} \frac{\partial p}{\partial a} + \frac{\partial w_g}{\partial g} \frac{\partial g}{\partial a} \right)$$

$$= w_p + a(bw_{pp} + 2w_{pg}) + 3(bw_{pg} + 2w_{gg})$$