EXAM 3

Math 103, Spring 2008-2009, Clark Bray.

You have 50 minutes.

No notes, no books, no calculators.

YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.

		Good lu		
	Name	Solutions	7	
	ID nur	nber		
1		"I		ered to the Duke Communit lard in completing this examination."
2				
3		S	ignature:	
4				
5	·			
6				
7		To	otal Score	(/100 points)

1. (16 pts) Let R be the region in xyz-space bounded by the six surfaces x + y + z = 1, x + y + z = 3, 2x + y = 0, 2x + y = 1, y + 4z = 2, and y + 4z = 5. Compute the integral

$$\iint_{R} (2x+y)^{2} dx dy dz$$

$$M = X+Y+Z$$

$$V = 2X+Y$$

$$M = Y+4Z$$

$$\frac{\partial(x,y,z)}{\partial(x,y,z)} = \det \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix} = -2$$

$$\frac{\partial(x,y,z)}{\partial(x,y,z)} = \frac{-1}{2}$$

$$\iint_{R} (2x+y)^{2} dxdy dz = \int_{2}^{5} \int_{0}^{1} \int_{1}^{3} (y^{2}) \left| \frac{\partial(x,y,z)}{\partial(x,y,w)} \right| dududw$$

$$= \int_{2}^{5} \int_{0}^{1} \int_{1}^{3} \frac{1}{2} y^{2} du dudw$$

$$= \int_{2}^{5} \int_{0}^{1} y^{2} du dw$$

$$= \int_{2}^{5} \frac{1}{3} y^{3} \Big|_{y=0}^{y=1} dw$$

$$= \int_{2}^{5} \frac{1}{3} dw$$

2. (14 pts) Write down and simplify, but do not evaluate, a single triple nested integral (in whatever coordinate system you can) that represents the volume of the part of the ball $x^2 + (y-1)^2 + z^2 \le 1$ that is outside of the cone $\phi = \pi/6$ and inside the cone $\phi = \pi/3$.

$$x^{2}+(y-1)^{2}+z^{2}=1$$

 $(y-1)^{2}+z^{2}=1$
 $(y-2)^{2}+1=1$
 $(y-2)^{2}+1=1$
 $(y-2)^{2}+1=1$
 $(y-2)^{2}+2^{2}=1$

D = Zsindsino

3. (14 pts) Write down and simplify, but do not evaluate, a nested integral representing the area of the part of the surface $4 + x^2 - y - z^2 = 0$ that is inside the cylinder $x^2 + z^2 = 2$.

$$Y = 4 + x^2 - z^2,$$

$$y = 4+x^2-2^2$$
, parom. by $7(u,v) = (u, 4+u^2-v^2, v)$

$$\overline{\Gamma}_{m} = (1, 2m, 0)$$

$$\overline{N} = (2m, 1, -2v)$$

$$||\nabla|| = \sqrt{4n^2 + 1 + 4v^2}$$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} {34 \choose -2x} \cdot \vec{r}' dt = \int_{1}^{1} {3x^{2} \choose -2x} \cdot {1 \choose 2x} dt$$

$$= \int_{1}^{1} (-x^{2}) dt = \left(-\frac{1}{3}x^{3}\right)_{1}^{1} = \left(\frac{2}{3}\right)_{1}^{1}$$

5. (14 pts) Let C be the curve parametrized by
$$\vec{r}(t) = (t^2 - 4t + 5, \cos(2\pi t)e^{t^4 - t}, \sin(2\pi t))$$
, with $t \in [0, 1]$. Compute the line integral over this curve of the field $\vec{F} = (2xe^{yz}, x^2ze^{yz}, x^2ye^{yz})$.

$$\nabla x \vec{F} = \left(x^2 e^{yz} - x^2 e^{yz}, 2xy e^{yz} - 2xy e^{yz}, 2xz e^{yz} - 2xz e^{yz} \right)$$

$$= \left(0, 0, 0 \right) \implies \vec{F} \text{ is a gradient of some f.}$$

$$f = x^{2}e^{4z} + C_{1}(x,z)$$

$$f = x^{2}e^{4z} + C_{2}(x,z)$$

$$f = x^{2}e^{4z} + C_{3}(x,z)$$

$$f = x^{2}e^{4z} + C_{4}(x,z)$$

$$f = x^{2}e^{4z} + C_{5}(x,z)$$

$$f = x^{2}e^{4z} + C_{5}(x,z)$$

$$f = x^{2}e^{4z} + C_{5}(x,z)$$

$$\int_{C} F \cdot dr = \int_{C} A \cdot dr = f(r(1)) - f(r(0))$$

$$= f(\frac{1}{0}) - f(\frac{1}{0})$$

$$= 4e^{\circ} - 25e^{\circ} = (-21)$$

6. (14 pts) Let C be the rectangle with vertices at (0,0), (2,0), (0,3), (2,3), oriented clockwise. Compute the line integral over this curve of the field $\vec{F} = (x^2y + xe^{x^3}, xy - \sin^2(e^y))$.

7. (14 pts) Let S be the part of the surface $z = (x^2 + y^2 - 1)(x^4 + y^4 + 1)$ that is below the plane z = 0, oriented upward. Compute the flux through this surface of the field $\vec{F} = (xy^3 + y^2z, x^2z^2 - x^2y, zx^2 - zy^3)$.

$$\nabla \cdot \vec{F} = 4^3 - x^2 + x^2 - 4^3 = 0$$

$$0 = \iint_{R} \nabla \cdot \vec{F} \, dV = \iint_{R} \vec{F} \cdot dS$$

$$= \iint_{S} \vec{F} \cdot dS = \iint_{S} \vec{F} \cdot dS$$

$$\Rightarrow \iint_{S} \vec{F} \cdot dS = \iint_{S} \vec{F} \cdot dS$$
On D, we have $z = 0$, and so also $\vec{F} = (x4^3, -x^24, 0)$
Then $\iint_{S} \vec{F} \cdot \vec{n} \, dS = \iint_{S} 0 \, dS = 0$