EXAM 3

Math 103, Spring 2007-2008, Clark Bray.

You have 50 minutes.

No notes, no books, no calculators.

YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.

Good luck!

	Name	
	ID number	
1		
2		"I have adhered to the Duke Community Standard in completing this examination."
3		
4		Signature:
5		
6		
7		
8		Total Score (/100 points
0		

1. (10 pts) Find the moment of inertia around the x-axis of the solid bounded by the planes $z=0,\,x+y=1,\,y=1+x,$ and y=z, with constant density $\delta.$

2. (12 pts) Find the volume of the solid bounded by the surface with spherical equation $\rho = 1 - \cos \phi$.

4. (12 pts) Compute the line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (x^3 - z, y^3, y + z^3)$ and C is parametrized by $\vec{r}(t) = (\cos^4 t, \sin^3 t, 7)$ with $t \in [0, 2\pi]$.

5. (10 pts) Compute the line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (ze^{xz} + e^x, 2yz, xe^{xz} + y^2)$ and C is parametrized by $\vec{r}(t) = (e^{t^2}, e^{t^3}, t^4)$ with $t \in [0, 1]$.

6. (12 pts) Compute the line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = (y + \sin x, x^2 + e^y)$ and C is the boundary of the region between the curves $y = x^4$ and $y = 32 - x^4$.

7. (10 pts) Compute the line integral $\int_C \vec{F} \cdot d\vec{r}$, where C is parametrized by $\vec{r}(t) = (t + t(t-1)e^t, (t-1)\sin t)$ with $t \in [0,1]$, and the field $\vec{F} = (P,Q)$ is known only to satisfy the equations

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0$$

$$P(x,0) = 3x^{2}$$

$$Q(x,0) = x^{3}$$

8. (12 pts) Compute the flux given by $\iint_S \vec{F} \cdot \vec{n} \, dS$, where $\vec{F} = (y, -x, z)$ and the surface S is defined by $z = \theta$, $0 \le \theta \le \pi$ and $1 \le x^2 + y^2 \le 4$.

9. (10 pts) Compute the flux given by $\iint_S \vec{F} \cdot \vec{n} \, dS$, where $\vec{F} = (y^3 + z^2, xy - xz^2, xe^y)$ and the surface S is the boundary of the solid defined by $x, y, z \ge 0$ and $x + y + z \le 1$.