EXAM 3

Math 103, Fall 2006-2007, Clark Bray.
You have 50 minutes.
No notes, no books, no calculators.
YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.

Good luck!
Name \qquad
ID number \qquad

1a. \qquad (/10 points)

1 b. \qquad (/15 points)

1 c. \qquad (/15 points)

1 d. \qquad (/15 points)

2 a . \qquad (/15 points)

Signature: \qquad

2 b . \qquad (/15 points)

2c. \qquad (/15 points)
"I have adhered to the Duke Community
Standard in completing this examination."
(

Total \qquad (/100 points)

1. For each of the following fields \vec{F} and paths C, compute the line integral

$$
\int_{C} \vec{F} \cdot \vec{T} d s
$$

(a) $\vec{F}=\left\langle 2 x y+y^{2}, 2 x y+x^{2}\right\rangle, C$ is parametrized by $\vec{r}(t)=\left(e^{t^{2}-t}, t^{3}+t^{2}\right), t \in[0,1]$.
(b) $\vec{F}=\left\langle e^{x}+y,-x+e^{y^{2}}\right\rangle, C$ is the boundary of the set R, which is the union of the solid unit square $[0,1] \times[0,1]$ and the solid unit disk.
(c) $\vec{F}=\left\langle x^{2} e^{x}, x+y^{2}, y+z^{3}\right\rangle, C$ is parametrized by $\vec{r}(t)=(\cos t, \sin t, \sin t+\cos t)$, $t \in[0,2 \pi]$. (Hint: Notice that the curve C is entirely in the plane $x+y-z=0$.)
(d) $\vec{F}=\left\langle\left(x^{3} y^{4} z^{3}+3 x^{2} y^{3} z^{3}\right) e^{x y},\left(x^{4} y^{3} z^{3}+3 x^{3} y^{2} z^{3}\right) e^{x y}, 3 x^{3} y^{3} z^{2} e^{x y}+1\right\rangle, C$ is parametrized by $\vec{r}(t)=(-\sin t, \cos t, t), t \in[0,2 \pi]$. (Hint: You may use the fact that $\nabla \times \vec{F}=\overrightarrow{0}$.)
2. For each of the following fields \vec{F} and surfaces S, compute the surface integral

$$
\iint_{S} \vec{F} \cdot \vec{n} d S
$$

(a) $\vec{F}=\langle x, z, y\rangle, S$ is parametrized by $\vec{r}(u, v)=(u v, u+v, u-v), u \in[0,1], v \in[0,1]$.
(b) $\vec{F}=\left(x^{2}+y^{2} z, z^{2} e^{x}, x^{3}\right), S$ is the boundary of the solid $R=\left\{x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\}$.
(c) $\vec{F}=\left(y e^{z^{2}}, x^{3} z^{2}, 2\right), S=\left\{x^{2}+y^{2}+(z+4)^{2}=25, z \geq 0\right\}$ oriented downward.

