## EXAM 3

> Math 103, Fall 2005, Clark Bray.
> You have 50 minutes.
> No notes, no books.
> YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.
> Good luck!

Name $\qquad$
ID number $\qquad$

1. $\qquad$ (/20 points)
2. $\qquad$ (/20 points)
3. $\qquad$ (/30 points)
4. $\qquad$ (/15 points)
5. $\qquad$ (/15 points)
"I have adhered to the Duke Community Standard in completing this examination."

Signature: $\qquad$

Total $\qquad$ (/100 points)

1. (a) Let $S_{1}$ and $S_{2}$ be the spheres of radius $a$ with centers at $\left[\begin{array}{l}a \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ a \\ 0\end{array}\right]$, respectively. Derive the spherical equations of $S_{1}$ and $S_{2}$.
(b) Let $D$ be the set of points interior to both $S_{1}$ and $S_{2}$. Suppose that the density inside $D$ is given by the function $\delta(\vec{x})$. Write down, but do not evaluate, an iterated integral in spherical coordinates representing the mass contained in $D$.
2. (a) Show by direct computation that if $C$ is the line beginning at $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$ and ending at $\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$, then

$$
\int_{C} x d y=\bar{x} \Delta y
$$

(b) Let $P$ be the hexagon with vertices (moving counterclockwise around $P$ ) at the points $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{c}-1 \\ -1\end{array}\right],\left[\begin{array}{c}-3 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -4\end{array}\right],\left[\begin{array}{c}5 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Use the result above to compute the area of $P$, and make sure to explain how Green's Theorem relates that line integral to area.
3. (a) Let $\vec{F}$ be the field $\left[\begin{array}{c}e^{y z} \\ x z e^{y z} \\ x y e^{y z}+1\end{array}\right]$, and $C$ the oriented curve defined parametrically by $\vec{r}=\left[\begin{array}{c}t^{3} \\ t^{2} \\ t\end{array}\right], t \in[0,1]$. Compute

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

(b) Let $S$ be the closed surface defined by $\rho=2+\sin ^{3}(\theta) \sin (6 \phi)$, and let $\vec{F}$ be the field $\left[\begin{array}{c}y^{2} z^{3} \\ 2 y z \\ x y-z^{2}\end{array}\right]$. Compute

$$
\iint_{S} \vec{F} \cdot d \vec{S}
$$

4. Let $S$ be the part of the graph $z=x^{2}+y^{2}$ directly above the unit circle in the $x y$ plane, oriented upwards, and let $\vec{F}$ be the field $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. Parametrize $S$, and then with that parametrization directly compute (without using any boundary theorems)

$$
\iint_{S} \vec{F} \cdot d \vec{S}
$$

5. Let $\vec{F}$ be the field $\left[\begin{array}{c}x^{2} z^{3} \\ e^{y}\left(z^{2}+1\right) \\ x y z^{2}\end{array}\right]$, and $C$ the oriented curve defined parametrically by

$$
\vec{r}=\left[\begin{array}{c}
1+e^{\sin (t)} \\
\cos ^{3}(t) \\
1
\end{array}\right], t \in[0,2 \pi] . \text { Compute }
$$

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

