EXAM 2

> Math 103, Fall 2005, Clark Bray.
> You have 50 minutes.
> No notes, no books.
> YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT. CLARITY WILL BE CONSIDERED IN GRADING.
> Good luck!

Name \qquad
ID number \qquad

1. \qquad (/20 points)
2. \qquad (/20 points)
3. \qquad (/20 points)
"I have adhered to the Duke Community Standard in completing this examination."

Signature: \qquad
4. \qquad (/20 points)
5. \qquad (/20 points)

Total \qquad (/100 points)

1. (a) Compute the value of $D_{\vec{v}} f(\vec{a})$ in terms of p, q, and r, where

$$
f\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x y z \\
x^{2} y-z^{2}
\end{array}\right] \quad \text { and } \quad \vec{a}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]
$$

(b) Suppose that we require $p^{2}+4 q^{2}+r^{2} \leq 4$; what velocity vector \vec{v} in the domain causes f_{2} to increase most quickly?
2. Consider the functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, where

$$
f\left(\left[\begin{array}{l}
s \\
t
\end{array}\right]\right)=\left[\begin{array}{c}
s^{3} t^{2}-2 t \\
2 t^{2}-s \\
t^{4}-2 s t^{2}
\end{array}\right] \quad \text { and } \quad g\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{l}
g_{1} \\
g_{2}
\end{array}\right]
$$

Suppose that when composed as $g \circ f$, we know that $\left(\partial g_{2} / \partial t\right)(1,1)=12$; what is $\left(\partial g_{2} / \partial y\right)(-1,1,-1) ?$
3. Evaluate the following, using any techniques from this course.
(a) $\iint_{R} 2 x^{2} y d A$, where R is the part of the unit disk in the third quadrant.
(b) $\iint_{D} \sin (x+y) d A$, where D is the entire unit disk.
4. Write down, but do not evaluate, explicit iterated integrals representing the following quantities. Make sure that you clearly demonstrate how you arrived at your result.
(a) The centroid of the region in the second quadrant below the line $y=2 x+2$.
(b) The mass of the region in \mathbb{R}^{3} bounded by the surfaces $x^{2}-y+z^{2}=0$ and $x^{2}+y+z^{2}=$ 2 , where the density is given by $\delta=x^{2}+y^{2}+z^{2}$.
5. Compute the following integral using the given change of variables.

$$
\iint_{D}\left(2-\frac{x^{2}}{y}\right)\left(8 x+\frac{2 x^{3}}{y^{2}}\right) d x d y
$$

D is the region in the first quadrant bounded by $y=x^{2}, 3 y=x^{2}, x^{2}+2 y^{2}=1, x^{2}+2 y^{2}=2$; use the variables $u=x^{2} / y, v=x^{2}+2 y^{2}$.

