EXAM 1

Math 103, Fall 2005, Clark Bray.

You have 50 minutes.

No notes, no books, no calculators.

YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT

	Goo	d luck!
	Name $\sum_{i=1}^{n} \sum_{j=1}^{n} \left\{ \frac{1}{n} \right\}$	ions
	ID number	
1	(/30 points)	
2	(/20 points)	"I have adhered to the Duke Community Standard in completing this examination."
3	(/30 points)	Signature:
4	(/20 points)	
Total	(/100 points)	

1. (a) The parallelopiped P has one vertex at the origin and the opposite vertex at (1,3,0). Two of the edges touching the origin are defined by the vectors (1,1,2) and (1,1,-2), respectively. What is the volume of P?

(b) Find the equation for the plane L in \mathbb{R}^3 that is parallel to and equidistant from the two lines

$$\begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathcal{R} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

Egn of plane is then
$$\overrightarrow{N}.\overrightarrow{X} = \overrightarrow{N}.\overrightarrow{X}_o$$

$$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \times \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3 \\ 3 \end{pmatrix}$$

$$-x+z=3$$

2. The point $\vec{x}(t)$ moves along the path shown below according to the parametric equations

$$x(t) = t^3 - 2t + 4$$
 $y(t) = t^3 - t + 6$

Find the area between this curve, the positive part of the x axis, and the line x = 8.

$$\bigcap_{A=-2}^{f=h} Y dx = \int_{-2}^{h} Y x' dt = \int_{-2}^{h} A = A_1 + A_2$$

Adding these we get $\int_{-2}^{2} 4 \times dt = A_1 + A_2 + A_4 = \text{desired area}$ = $\int_{-2}^{2} (t^3 - t + 6)(3t^2 - 2) dt = \int_{-2}^{2} (3t^5 - 5t^3 + 18t^2 + 2t - 12) dt$

$$= \frac{1}{2} t^{6} - \frac{5}{4} t^{4} + 6 t^{3} + t^{2} - 12 t^{2} =$$

$$= \frac{2}{2} \times \frac{4}{4} \times \frac{1}{1-2}$$

$$= \left(32 - 20 + 48 + 4 - 24\right) - \left(32 - 20 - 48\frac{3}{2} + 4 + 24\right)$$

3. Compute the following:

(a)
$$\frac{\partial}{\partial z}((x^2+1)^{x-y}z^{xy}) = \left(\chi^2\right)^{x-y} \left(\chi^2 + 1\right)^{x-y}$$

(b) The slope of the tangent line to the cross-section of the graph of
$$f(x,y) = x^2 + y^2$$
 by the vertical plane defined by the line $2x + 3y = 6$, at the point $(3,0)$.

The slope is $0 = f(x)$, with $a = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$, $V = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $A = V$.

Since $2x + 3y = 6$ is parametrized by $\begin{pmatrix} 3 \\ 0 \end{pmatrix} + f\begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

First we compute $0 = f(x) + f(x) = f$

(c) The sun causes a point (x, y, z) to cast a shadow on the xy-plane at the point (x - z, y - 2z, 0). Find the instantaneous velocity of the shadow of a point that is at (1, 2, 4) and moving with velocity (3, 2, 6).

at
$$(1,2,4)$$
 and moving with velocity $(3,2,0)$.

$$f\left(\begin{array}{c} \times \\ Y \end{array}\right) = \begin{pmatrix} \times \\ 1-2z \\ 0 \end{pmatrix}$$
velocity of the shadow = $\frac{1}{2}$ then we compute

$$f\left(\begin{array}{c} X \\ Y \end{array}\right) = \frac{1}{2} + \frac{1}{2} +$$

4. The linear transformation T has

$$T\left(\vec{e_1}\right) = \begin{bmatrix} 2\\0\\3 \end{bmatrix}$$
 and $T\left(\vec{e_2}\right) = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ and $T\left(\vec{e_3}\right) = \begin{bmatrix} 0\\1\\3 \end{bmatrix}$

Compute
$$(T \circ T) \left(\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \right)$$

As
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 0 & 3 \end{pmatrix}$$

Then
$$(T \circ T)(x) = (AA)x$$
, so we compute

$$AA = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 3 & 1 & 4 \\ 15 & 0 & 9 \end{pmatrix}$$