EXAM 1

Math 103, Summer 2005 Term 2, Clark Bray.

You have 75 minutes.

No notes, no books, no calculators.

YOU MUST SHOW ALL WORK AND EXPLAIN ALL REASONING TO RECEIVE CREDIT

	S_{Name}	tions
1	(/20 points)	
2	(/20 points)	
3	(/20 points)	"I have adhered to the Duke Community Standard in completing this examination."
4	(/20 points)	Signature:
5	(/20 points)	
ntal	(/100 points)	

1. (a) Find an equation of the unique plane that contains the point $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and is perpendicular to each of the planes below:

The normal vector must be
$$\int \int \vec{n}_1 \, and \, \vec{n}_2 \dots \, so we$$
 choose $\vec{n} = \vec{n}_1 \times \vec{n}_2 = \det \begin{pmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 3 & 1 & 2 \\ 1 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 3 \\ -13 \\ 2 \end{pmatrix}$

So egn is
$$\overrightarrow{N} \cdot \overrightarrow{\times} = \overrightarrow{N} \cdot \overrightarrow{\times}$$

$$3 \times -13 \times +22 = \begin{pmatrix} 3 \\ -13 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

(b) What is the function whose graph is the plane from part (a)?

$$3x - 13y + 2 = -17$$

$$2 = -17 - 3x + 13y$$

$$2 = \frac{-17 - 3x + 13y}{2}$$

This is the graph of
$$Z = f(x) = \frac{-17 - 3x + 13y}{2}$$

2. Consider the parametric curve in the plane defined by

$$\vec{r}(t) = \begin{bmatrix} 1/(1+t^2) \\ t^3 - t \end{bmatrix}$$

(a) Find the velocity vector as a function of t.

velocity =
$$\overline{r}'(x) = \left(\frac{-2x/(1+x^2)^2}{3x^2-1}\right)$$

(b) Between t=-1 and t=1, this parametric curve traces out (clockwise) a closed loop that starts and ends at the origin, and does not intersect itself anywhere else. Write down (but do not evaluate!) a single integral representing the area of that loop, and make sure to explain your reasoning.

$$\int_{t=1}^{t=1} A_{1} \int_{t=0}^{t=0} A_{1} \int_{t=1}^{t=0} A_{1} \int_{t=1}^{t=1} A_{2} \int_{t=1}^{t=1} A_{1} \int_{t=1}^{t=1} A_{2} \int_{t=1}^{t=1} A_{1} \int_{t=1}^{t=0} A_{1} \int_{t=1}^{t=1} A_{2} \int_{t$$

3. Consider the function f and vectors \vec{p} and \vec{q} given by

$$f\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}xy\\x^2 + y^2\end{bmatrix}$$
 and $\vec{p} = \begin{bmatrix}1\\2\end{bmatrix}$, $\vec{q} = \begin{bmatrix}3\\4\end{bmatrix}$

(a) Compute, directly from the definition, the value of
$$D_{q}f(\vec{p})$$
.

$$\oint f(\vec{p}) = \iint_{k=0}^{\infty} f(\vec{p}) + \iint_{k=0}^{\infty} f(\vec{p}) = \iint_{k=0}^{\infty} f(\vec{p}) + \iint_{k=0}^{\infty} f(\vec{p}) = \iint_{k=0}^{\infty} f(\vec{p}) + \iint_{k=0}^{\infty} f(\vec{p}) +$$

$$= \begin{pmatrix} 10 \\ 22 \end{pmatrix}$$

(b) Compute the value of $D_{\vec{q}}f(\vec{p})$ using gradient vectors.

$$\left(\overrightarrow{p} \right) = \left(\begin{array}{c} D_{\overline{g}} f_{1}(\overline{p}) \\ D_{\overline{g}} f_{2}(\overline{p}) \end{array} \right) = \left(\begin{array}{c} \nabla f_{1}(\overline{p}) \cdot \overline{g} \\ \nabla f_{2}(\overline{p}) \cdot \overline{g} \end{array} \right)$$

(c) At the point \vec{p} , in what unit vector direction is the second component of f increasing the fastest?

$$f_{z} \text{ increases fastes} f \text{ at } \vec{p} \text{ in the direction of } \mathcal{V}f_{z}(\vec{p})$$

$$= \frac{\mathcal{V}f_{z}(\vec{p})}{\|\mathcal{V}f_{z}(\vec{p})\|} = \frac{\binom{2}{4}}{\|\binom{2}{4}\|} = \frac{\binom{1}{5}}{2\sqrt{5}}$$

4. We have a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, and all we know about it is that

$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\4\end{bmatrix}$$
 and $T\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix}$

(a) Find the matrix that represents T.

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

These are columns of the matrix A,

So
$$A = \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$$

(b) Find the matrix that represents $T \circ T$.

The matrix for
$$T \cdot T$$
 is AA :
$$\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 4 \\ 8 & 6 \end{pmatrix}$$

5. What is the value, if it exists, of the limit below?

Let's compule the value of this limit along the line
$$Y = mx$$
:

$$\lim_{x \to 0} \frac{(x^3)(mx) - (x)(mx)^3}{(x^2 + (mx)^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3)(mx) - (x)(mx)^3}{(x^2 + (mx)^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3)(mx) - (x)(mx)^3}{(x^2 + (mx)^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3)(mx) - (x)(mx)^3}{(x^2 + (mx)^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3)(mx) - (x)(mx)^3}{(x^2 + (mx)^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^2 + y^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^2 + y^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^2 + y^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^2 + y^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^2 + y^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^2 + y^2)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^2 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^2 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^2}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^3}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^3}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^3}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^3}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^3}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^3}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^3}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^3}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^3}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3}{(x^3 + (mx)^3)^3}$$

$$= \lim_{x \to 0} \frac{(x^3 + (mx)^3)^3$$